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Ephemeral Network-Layer Fingerprinting Defenses
Anonymous Author(s)

ABSTRACT
Fingerprinting attacks on encrypted network traffic may reveal
sensitive information about users of anonymous communication
systems, such as visited websites or watched videos, linking users’
activities to their identities. Defenses come at the cost of bandwidth
and delay overheads, impacting the user experience and making
wide-scale deployment challenging. There is a rich history of at-
tacks and defenses, with continual improvements in deep learning
as a catalyst, making deployment of defenses an ever more pressing
matter. This paper introduces a new defense strategy against fin-
gerprinting attacks—ephemeral defenses—where efficient defense
search enables the generation of unique per-connection defenses.
We demonstrate that ephemeral defenses aremultipurpose network-
layer defenses against circuit, website, and video fingerprinting
attacks, achieving competitive performance compared to related
work. Furthermore, we create tunable ephemeral defenses that are
not overly specialized to a particular fingerprinting attack, dataset,
or network conditions. Ephemeral defenses are practical, demon-
strated through integration with WireGuard and deployment at
REDACTED VPN for a year, serving thousands of daily users.

KEYWORDS
anonymous communication, fingerprinting, network simulation

1 INTRODUCTION
The exact program logic of effective and efficient network traffic
fingerprinting defenses is complex. This should come as no surprise,
as the community has been working on defenses against finger-
printing attacks for decades [8, 12, 28, 29, 39, 41, 65, 71]. To make
matters worse, advances in deep learning over the last decade have
significantly enhanced fingerprinting attacks performed by rela-
tively weak local, passive eavesdroppers, who observe patterns in
encrypted traffic [7, 43, 47, 59, 63, 66, 67, 69]. While the real-world
threat of attacks remains debated [4, 13, 34, 36, 49, 50, 78], advances
in attacks have made it more challenging to find effective defenses
while minimizing bandwidth and latency overheads [14, 15].

This paper builds from the insight that the probability of random
program logic serving as a decent fingerprinting defense increases
substantially if the program can be expressed within a framework
dedicated to traffic analysis defenses [19, 23, 53, 56, 70, 77]. When
constrained in expressivity—as opposed to general-purpose frame-
works like WFDefProxy [23] (which runs arbitrary Go programs)—
such a framework acts as a domain-specific language, defining a
search space of possible defenses that can be expressed within it.
For this work, we picked the Maybenot framework [56] with roots
in the practical Tor Circuit Padding Framework [53] and traffic
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analysis literature [37, 68], where defenses are expressed as proba-
bilistic finite state machines. This structure allows us to efficiently
generate and deploy randomized defenses from this search space.

Due to the use of a restricted framework, the search space is
densely populated with potential defenses. However, instead of
exhaustively searching this space for the best defense, we flip the
script and search formany defenses that fulfill some basic overhead
constraints in a simulated environment. The many defenses are
then assessed on how well they defend against attacks in aggregate,
with each session (or trace) randomly selecting a defense. This
search process is sufficiently efficient to enable what we introduce
as ephemeral defenses; defenses used only once per trace (e.g., a
Tor circuit), similar to how ephemeral keys are used in TLS [62].
This novel defense property prevents attackers from training on the
exact defenses used, enhancing resilience against adaptive attacks.

The overarching contribution of this paper is the introduction
and demonstration of multipurpose, network-layer ephemeral
defenses: defenses that are not tightly tuned to any particular
fingerprinting attack, dataset, or network conditions. These
defenses apply to circuit, website, and video fingerprinting attacks,
offering tunable trade-offs between bandwidth/delay and defensive
effectiveness against state-of-the-art attacks. While our evaluations
in the paper are based on simulation, ephemeral defenses are prac-
tical: they have been integrated with WireGuard [18] and deployed
by REDACTED VPN for a year, serving thousands of daily users [3].

In support of the broader contribution of ephemeral defenses,
the paper presents the following specific technical contributions:

• A search method for ephemeral fingerprinting defenses
based on deriving random Maybenot machines that fulfill
constraints in simulated environments that can be com-
bined with polynomial growth and deployed with tunable
overhead-defense trade-offs (Section 3).

• A semi-automated tuning process, showing that ephemeral
defenses can provide tunable defense against Circuit
Fingerprinting attacks in Tor significantly improving
over existing deployed defenses (Section 4).

• A comprehensive set of Website Fingerprinting (WF) ex-
periments that demonstrate that ephemeral defenses can
be tuned along the Pareto front of practical padding-
only and blockingWF defenses, provide insights into how
the increasingly rich feature representations and architec-
tures of state-of-the-art WF attacks push the boundaries
of closed-world evaluations, and highlight the fragility of
defense and attack tuning on results and consequently real-
world practicality of WF defenses (Section 5).
• Demonstrate that ephemeral blocking defenses provide a

practical trade-off between attack accuracy and over-
head for Video Fingerprinting without tuning (Section 6).

Section 7 reflects on our results, including real-world deployment
of ephemeral defenses. Section 8 covers key related work, and
Section 9 concludes. We begin with background in Section 2.
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2 BACKGROUND
Traffic analysis of encrypted network tunnels can have the goal
of identifying—fingerprinting—the type of circuit used in Tor (Cir-
cuit Fingerprinting, Section 2.1), the website being visited (Website
Fingerprinting, Section 2.2), and the video being watched (Video
Fingerprinting, Section 2.3). In those sections, we describe both
state-of-the-art attacks and defenses, noting that common defenses
typically fall into two categories: padding-only defenses, which
inject dummy traffic to obscure patterns, and blocking defenses,
which also delay traffic to control timing leakage. Finally, we intro-
duce Maybenot, a defense framework that expresses both types of
defenses as probabilistic state machines (Section 2.4).

Following standard practices of most prior fingerprinting works,
throughout the paper, regardless of the fingerprinting attack con-
sidered, we assume a local, passive network adversary that can
observe packet timings and sizes but cannot modify, drop, or delay
traffic [39, 44, 61]. Furthermore, in a closed-world setting, there is
a fixed number of classes (e.g., representing websites) on which
attacks are trained and tested. We use average accuracy to measure
the effectiveness of attacks in closed-world settings throughout,
as our goal is to compare the relative strengths and weaknesses of
defenses, rather than assess the absolute performance of attacks in
the more realistic open-world setting [4, 13, 34, 36, 49, 50, 78].

2.1 Circuit Fingerprinting
In Tor, circuits are created and used for different purposes. There
are four widely used purposes, with a fifth relatively recently added:
general, introductory, rendezvous, HSDir, and Conflux [75]. General
and rendezvous circuits may carry significant application-layer
data (Conflux can carry both). In contrast, introductory and HSDir
circuits typically transport less data when connecting to an onion
address (trivial distinguisher). There are more general circuits than
rendezvous circuits in Tor [42], subject to some base rate.

2.1.1 Attacks. The purpose of a circuit can be reliably finger-
printed [39], despite deployed defenses [24, 38, 51, 73]. Syverson et
al. [73] recently used Deep Fingerprinting [69] for this purpose.

2.1.2 Defenses. As part of the Tor Circuit Padding Framework [52,
53], two padding machine defenses are deployed in Tor: One at-
tempts to make introductory circuits appear as HSDir circuits and
the other to make rendezvous circuits look like general circuits.
Both remain fingerprintable today [38, 51, 73]. Kadianakis et al.
began laying the groundwork for improved defenses [38], but to
our knowledge, none have yet been implemented or deployed.

2.2 Website Fingerprinting
Traffic analysis of encrypted tunnels (that hide destination IP-
addresses, otherwise trivial [5]) to fingerprint visited websites is
referred to as Website Fingerprinting (WF) [12, 28, 29, 41, 71].

2.2.1 Attacks. Attacks can be grouped by relying on manual fea-
ture engineering—such as k-fingerprinting [27] and CUMUL [49]—
or automatic feature engineering using deep learning [1, 63, 69]. We
consider three deep-learning-based attacks: Deep Fingerprinting
(DF) [69], Robust Fingerprinting (RF) [67], and Laserbeak [43].

DF was the first deep-learning-based attack to significantly im-
pact defense design, achieving high (90%+) accuracy against the
WTF-PAD [37] defense, which protects against k-fingerprinting
and CUMUL. DF uses only the direction of cells from a network
trace as its feature representation, ignoring time.

While earlier attacks, such as Tik-Tok [59], successfully incor-
porated time into DF’s feature representation (with directional
time), the next generational leap comes from RF, which improved
attack robustness in the presence of defenses thanks to its Traffic
Aggregation Matrix (TAM) representation. With TAM, there are
two channels of features that count sent and received packets, re-
spectively, in bins with a resolution of 10–60 ms. This two-channel
robust feature representation negates many defenses [67].

Building on the success of multi-channel feature representations,
Laserbeak [43] introduces six channels (“multi”) with complement-
ing feature representations, the use of attention with transformers,
and various training and architectural improvements. Mathews et
al. provide three versions: DF-multi, Laserbeak without attention,
and Laserbeak. DF-multi is DF with enhanced feature representa-
tions and improved training. Laserbeak without attention removes
the transformer from the architecture, significantly improving exe-
cution time. We include all three versions.

2.2.2 Defenses. WF defenses employ a combination of padding
traffic (bandwidth) and blocking (delay) to transform traffic toward
some goal. Mathews et al. [44] group WF defenses into five groups:
adversarial perturbation defenses, collision defenses, fixed-rate de-
fenses, splitting defenses, and randomized defenses.

There are three groups of defenses that we do not consider in
this paper but explain for the sake of completeness. Adversarial
perturbation defenses aim to trick ML-based models used by ad-
versaries. Typically, these defenses consider weak non-adaptive
adversaries [44] and are limited to particular classes of attacks.
Traffic splitting defenses assume that clients have one or more
unobservable paths, therefore only defending against weak adver-
saries [6]. Collision defenses require a database of reference traces
or similar to coordinate collisions between groups of websites [44].

This leaves fixed rate and randomized defenses. As the name
suggests, fixed-rate defenses send traffic at some (potentially adap-
tive) fixed rate in both directions. Padding is sent if no real traffic is
available, and real traffic is blocked until the defense dictates that
traffic should be sent. Therefore, such defenses suffer from high
overheads, particularly regarding delay [44]. Randomized defenses
aim to obfuscate traces by randomizing traces. Such defenses—that
only use padding—become less effective if the adversary can train
on significant numbers of defended traces [44, 55].

2.3 Video Fingerprinting
Video Fingerprinting (VF) analyzes encrypted traffic between a
client and a video server to identify the video being streamed. Mod-
ern video streaming typically uses the DASH standard [16], in
which videos are encoded at multiple quality levels and split into
fixed-length segments (a few seconds each), served over HTTP(S).
Streaming begins with a request for a Media Presentation Descrip-
tion (MPD) file, which lists available qualities and URLs for each
segment. The client then fetches segments individually, initially
in quick succession, followed by steady-state streaming, where a
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segment is requested roughly once per segment duration. Finally,
clients use an Adaptive Bitrate (ABR) algorithm to switch quality
levels mid-stream based on network conditions.

2.3.1 Attacks. Due to the periodic nature of video traffic, it is possi-
ble to achieve remarkable success against undefended traffic by sim-
ply comparing a video’s segment sizes, which are easily obtainable
through the manifest, to the observed sequence of segment sizes.
Thus, many attacks are based on heuristics and basic machine learn-
ing algorithms, such as Leaky Streams [61] andWalls Have Ears [25].
However, more recent attacks such as Beauty and the Burst [66]
have begun to employ deep learning, with similar input formats and
model structures to WF attacks. WF attacks are in fact effective out
of the box [26], and the state-of-the-art VF attacks, Video-Adapted
Deep Fingerprinting (vDF) and Video-Adapted Robust Fingerprint-
ing (vRF) [11], are adaptations of DF [69] and RF [67] with time
series of byte counts as input instead of cells/packets.

2.3.2 Defenses. Compared to WF, very little work has been done
on defenses against VF attacks. Existing approaches include adver-
sarial samples, differential privacy [80], and trace morphing based
on GAN-generated traffic traces [76]. Unfortunately, adversarial
samples are ineffective, and both differential privacy and trace mor-
phing have limitations, including significant overhead trade-offs,
unknown effects on user experience, and deployment challenges.

A recent study [26] tested adaptations of two WF defenses,
FRONT [21] (randomized padding) and RegulaTor [31] (strict traf-
fic patterns) on video traffic, finding that the former is entirely
ineffective and the latter degrades user experience significantly.
In response, the authors proposed Scrambler, a defense that adds
random padding to segment downloads, achieving great success
for all but a small subset of the tested videos. Due to Scrambler’s
efficacy, low impact on user experience when bandwidth is high,
and implementation in Maybenot [56], we use it as a benchmark.

2.4 Maybenot
Maybenot is a framework for traffic analysis defenses implemented
in Rust [56–58], based on the Tor Circuit Padding Framework [52,
53], WTF-PAD [37], and the notion of Adaptive Padding [68]. The
framework is designed to be integrated with a transport protocol,
such as TLS [62], Tor [17], or WireGuard [18], running on both
the client-side and at a (potentially intermediate, e.g., a relay in
Tor) server. It acts as a runtime for probabilistic state machines.
The integrator continuously reports events that describe network
activities to an instance of the framework. The framework, in turn,
runs the state machines in its instance and returns actions from the
machines. The possible actions are to schedule padding (a dummy
packet), block outgoing packets for a duration, or update an internal
timer to support more complex state machines.

An instance of Maybenot involves zero or more machines as
well as limits imposed on all machines. Limits enable or prevent
machines from scheduling actions. There are four kinds of limits,
applied in the following order: (1) Per-state limits restrict how many
actions may be scheduled on self-transitions to the same state in a
machine. (2) Per-machine absolute limits enable amachine to create a
total number of padding packets and duration of active blocking, by-
passing other limits below. (3) Per-machine fractional limits restrict

the fraction of packets that can be padding and the fraction of time
that outgoing traffic can be actively blocked. (4) Framework-wide
fractional limits are enforced across all machines, limiting global
padding fraction and blocking duration.

2.4.1 Maybenot machines. A machine consists of the two above-
mentioned per-machine limits and one or more states. A state con-
sists of a counter, an action, and transitions.

The counter can be used to implement more expressive machines
as counters are incremented, decremented, set, and reach zero,
triggering events that may lead to transitions. Actions are triggered
(scheduled, if limits allow) upon transition to the state. Possible
actions include scheduling a padding packet to be sent, scheduling
the blocking of outgoing traffic for a specific duration, and updating
timers. The timers, like counters, are designed to support more
expressive machines. Actions to pad or block, as well as the duration
to block for, are sampled for one of 11 parameterized distributions,
such as the uniform and Poisson distributions.

The transitions are a matrix specifying the probability of transi-
tioning to every state in the machine for every possible event in the
framework. There are 13 events in Maybenot, including events for
packets sent/received, distinguishing between with and without
padding, as well as events related to blocking, limits, and timers.

2.4.2 The Maybenot simulator. Enables rapid development of ma-
chines. Takes as input a (base) network trace, Maybenot machines
run at both the client and the server, and a specified delay between
the client and the server. The simulator then outputs a simulated
defended network trace. We forked and enhanced the network
model of the simulator to support, in addition to a delay between
the client and server, a simulated network bottleneck (symmetric)
in terms of packets-per-second (PPS) rate. Blocking actions—and
now sent traffic exceeding the bottleneck rate—leads to aggregate
delays if subsequent network traffic. The original Maybenot simu-
lator and our changes conservatively overestimate the aggregate
delays (not to underestimate defense overheads), similar to the sim-
ulation of Tamaraw [10] and observations in related work [33, 79].
Appendix A provides further details on our improvements.

3 EPHEMERAL DEFENSES
The intuition behind ephemeral defenses is summarized in four
parts marked in Figure 1. First, we generate candidate defenses
as random Maybenot machines derived from seeds (Section 3.1).
Ephemeral defenses are instantiated deterministically from these
seeds, enabling reproducible yet diverse defense instances across
traces and simulations. Second, we repeatedly search (shaded area)
for defenses that fulfill constraints in simulated environments (Sec-
tion 3.2). Third, to achieve the desired number of defenses, defenses
can be optionally combined with polynomial growth under con-
straints (Section 3.3). Finally, defenses are deployed with tunable
overhead-defense trade-offs (Section 3.4). We detail each step and
end with an example (Section 3.5).

3.1 Random Machines
Random machines use Maybenot machines as a domain-specific
language for traffic analysis defenses. In gist, it consists of random-
ized machine limits (see Section 2.4), one or more random states,
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Figure 1: Overview of the defense search process. (1) Random machines with strongly connected states based on packet-level
events (liveliness) are repeatedly derived (first dashed shaded area) from seeds and (2) evaluated as defenses in simulated
environments (second dashed shaded area) in terms of fulfilling constraints wrt. bandwidth load and additional runtime (delay).
(3) Found defenses can be used to create stacked combinations of new defenses (with polynomial growth) that are also subject
to constraints. (4) Defenses can be tuned when deployed for different trade-offs in terms of overhead and protection.

feature flags for turning on or off Maybenot features, and three ref-
erence points. The feature flags control whether blocking actions are
allowed (off for padding-only defenses) and whether “expressive”
features, such as counters and timers, are permitted. This paper
does not explore expressive features for random machines, using
only a subset of Maybenot features to limit the size of the search
space. Based on feature flags, each state will perform either a block
or pad action with parameters influenced by the reference points.

The count reference point is the upper bound for uniformly
random sampling of allowed padding packets and per-state limits.
Its default value is 100. Per-state limits have a 50% probability of
being set (as a probability distribution, see below). A budget of
allowed padding packets is always sampled if the feature flag is set.

The duration reference point 𝑝 determines the sampled dura-
tions for when to take actions (scheduled timeouts) and the duration
of blocking actions. The duration reference point is also an upper
bound on all sampled durations from distributions. The default
value is 100 ms. The maximum value is either 𝑝 (with 50% prob-
ability) or sampled uniformly random from [0, 𝑝] independently
for each distribution. Note that this value provides a maximum
duration for blocking outgoing traffic, with significant implications
for the effectiveness and efficiency of defenses. For the randomized
parameters of distributions, 𝑝 influences the ranges of their values
to steer the expected value of the distribution towards the reference
point (for applicable distributions); see Appendix B.

The timeout reference point determines the minimum timeout
value on all blocking and padding action timeouts – defaults to zero.
If set, this restricts the ability of machines to cause large bursts by
repeatedly padding without any intermediate time.

The final piece of each random state is its transitions. With 50%
probability per relevant event (e.g., ignoring timer/counter events
for non-expressive machines), add transitions to a uniformly ran-
dom subset of states with random probabilities adding up to 1.0.
This process is repeated until the machine’s state transitions form
a strongly connected graph of all states (using Kosaraju’s algorithm)
with liveness, i.e., form a strongly connected graph based only on
transitions on events for sending and receiving normal packets
with a minimum transition probability of 5%. Unlike padding or
blocking, which runtime limits may prevent, these events always
occur, preventing machines from getting stuck in a state.

3.2 Defense Search
By repeatedly deriving defenses from seeds (Section 3.2.1), we search
for defenses in simulated environments (Section 3.2.2) that fulfill
some specified load and delay constraints (Section 3.2.3).

3.2.1 Deriving Defenses. We define a defense as two lists of May-
benot machines: One list for the client and one for the server. May-
benot specifies a custom serialization format for machines based
on serde, compression, and base64 encoding [58]. For ephemeral
defenses, we adopt a more safety-focused approach, inspired by
ML-KEM [46], of using seeds. Given a configuration file for defense
search, a seed deterministically generates a defense. We do this by
using xoshiro256 [9], a deterministic PRNG. The execution time
can be bound, leading to verifiable defense derivation in the order
of milliseconds. For example, using hyperfine [54] to benchmark
our CLI tool to derive a defense and print its serialized machines
to stdout (including all parsing of the config file, base traces, etc.)
takes 43.6 ± 4.7 ms on a commodity laptop for one of our ephemeral
padding-only defenses used in Section 5.

3.2.2 Environments. The environment is used to simulate a defense
on network traces using the Maybenot simulator. We define an en-
vironment as a set of network traces, a finite number of simulation
steps, and a network model between client and server.

The network traces should represent the type of defense be-
ing searched for, e.g., WF traces could be from the BigEnough
dataset [44]. The number of traces can be relatively few compared
to typical datasets; around 10–30 traces suffice.

The simulation steps are primarily bound to deal with machines
that get “stuck” in action loops (e.g., repeatedly scheduling new
blocking on blocking beginning). At first glance, it might be com-
pelling to express the simulation in terms of the number of packets
at the client (as captured in typical datasets), but machines quickly
find a way to mess this up. Other reasons to control simulation
steps are to search for defenses that fulfill their constraints with
fewer actions and to search only for defenses that target the start
of traces (e.g., when defending handshakes for CF in Section 4).

The network model between client and server is part of the
extended Maybenot simulator, as described in Section 2.4 and Ap-
pendix A. It consists of an RTT and a PPS rate. The RTT between
the client and server affects the simulated network trace at the
server and the transmission time of padding packets. The extended
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simulator also supports a PPS rate, specifying the maximum PPS
of a simulated network bottleneck between the client and server.
Packets over the PPS get additional simulated delay before being
received. If normal packets get delayed, this causes aggregate delay
throughout the simulated network trace.

3.2.3 Constraints. Constraints are expressed in terms of accept-
able ranges of load (additional bandwidth) and delay (additional
duration). Load is defined for both client and server (based on pack-
ets sent), while delay is the aggregate increase in duration, as both
client and server machines contribute to the total duration. These
constraints are computed as averages over all traces in the envi-
ronment. For each simulated trace, there are also early constraint
checks for a configurable minimum total number of normal packets
and that at least a hardcoded 20% of events from the simulator
relate to normal (non-padding) packets. These early checks filter
out a large number of machines that too aggressively pad traffic,
toggle blocking on and off, etc.

3.3 Stacked Combinations
With input of one or more defenses, create a list 𝐶 of all client
machines and a list 𝑆 of all server machines in those defenses.
Then, based on a provided maximum height 𝐻 ≥ 1, create new
defenses by randomly selecting between [1, 𝐻 ] random machines
for the client and server, independently. Check for constraints in an
environment just as in the defense search. If the machines are from
defenses fulfilling identical constraints, we observe that combined
defenses typically require significantly fewer attempts to fulfill
constraints compared to random machines. For example, for the
ephemeral padding-only defenses in Section 5, it took an average of
1.28 attempts (median 1) to create defenses fulfilling the constraints.

The total number of unique combinations is:

©­«
min(𝐶,𝐻 )∑︁

𝑘=1

(
𝐶

𝑘

)ª®¬ × ©­«
min(𝑆,𝐻 )∑︁

𝑘=1

(
𝑆

𝑘

)ª®¬ (1)

Assuming a fixed 𝐻 , the number of combinations grows polynomi-
ally 𝑂 (𝑁 2𝐻 ) for 𝑁 = 𝐶 = 𝑆 . For example, 𝐻 = 5 with 𝑁 = 1, 000
gives 6.88 × 1025 unique defenses and 𝐻 = 6 with 𝑁 = 10, 000 in
total 1.93 × 1042 unique defenses. The polynomial growth is an
advantage when deploying ephemeral defenses in settings where
defenses may be distributed by a central party, saving compute.

3.4 Tunable Deployment
The Maybenot framework provides framework-wide limits, per-
machine limits, and per-machine budgets for both padding packets
and blocking duration (Section 2.4). These limits are also used
during defense search—and we enforce that random machines have
liveness (Section 3.1)—so most defenses are inherently tunable.
Hitting limits only temporarily stops the defense. As soon as limits
permit, actions will continue to be scheduled. As such, defenses are
inherently tunable in deployment by adjusting limits, allowing for
overhead-protection trade-offs.

3.5 Example: Ephemeral Padding-Only
Defenses for Website Fingerprinting

Appendix C introduces the TOML configuration of our Rust CLI
and provides a detailed walkthrough of the configuration for our
ephemeral padding-only defenses for WF evaluated in Section 5. To
summarize and highlight key insights, the configuration defines the
number of defenses to search for, derivation settings for machine
and environment parameters, and defense constraints. It primarily
involves balancing search space exploration with computational
limits. For example, environments are sampled and explored for a
maximum number of attempts before being resampled, and con-
straints in terms of load and delay are either tightly or loosely
defined in ranges of acceptable fractions. The entire search is deter-
ministic from a seed; we use seed 0 for all ephemeral defenses as a
nothing-up-my-sleeve number throughout the paper.

4 PARAMETER TUNING EPHEMERAL
DEFENSES FOR CIRCUIT FINGERPRINTING

To demonstrate a straightforward approach to parameter tuning
ephemeral defenses, we search for CF defenses that are an essential
part of protecting access to onion services in Tor.

4.1 False Positives for Onions
We sketch a defense to create false positives for a passive network
adversary attempting to fingerprint onion-site traffic. The source of
false positives would be general circuits misclassified as rendezvous
circuits. In addition, such a defense would require that general cir-
cuits create dummy introduction and HSdir circuits. Because the
base rate of general circuits is higher than onion circuits, achiev-
ing a low false positive rate in a balanced experiment (as below)
would likely suffice. Therefore, the defense could be run with some
probability on general circuits (always on rendezvous circuits). We
emphasize that such tuning would be necessary, as the adoption
of Conflux [2] circuits introduces additional complexities, and that
the impact of the added latency of onion circuits (twice the circuit
length) also requires careful investigation.

4.2 Parameter Tuning
Syverson et al. [73] collected a large dataset from the live Tor
network to evaluate the fingerprintability of the Onion Location
feature of Tor Browser [74]. From their dataset, we create a CF
dataset of 10,000 samples each of general and rendezvous circuits.
We truncate each sample to the first 30 cells and confirm that RF and
DF still achieve perfect (99.9%) accuracy. To search for ephemeral
defenses, we randomly picked 7 general and 7 rendezvous traces
from the dataset for our environment.

In the context of ephemeral defenses, parameter tuning is updat-
ing the configuration file. All parameters are relevant, including
those for tunable deployment, which ultimately modify the ma-
chines’ budgets. The search space is practically infinite, especially
when considering the environment traces. Here, we describe a semi-
automated basic method for parameter tuning. Much can probably
be improved in future work.

The tuning method operates in phases, with each phase executed
iteratively. Each phase begins with a starting configuration and
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then iteratively randomly changes each parameter in the config-
uration with a small probability until it finds a new (previously
unevaluated) one. Each new configuration searches for defenses
up to a maximum number of defenses or until a maximum run-
time has expired. The defenses are then simulated on a dataset and
evaluated using DF, RF, and overhead calculations. This process is
automated and deterministically performed from a seed. It repeats
until stopped manually. Then, all results are evaluated manually,
and a new starting configuration is created for the next phase.

The parameter tuning of CF began with a liberal configuration
file (Appendix D), selecting 4–14 random traces from the dataset
and allowing client and server loads between 0.5 and 10.0, as well as
delays between 0.5 and 5.0. We searched for up to 1,000 defenses for
up to 15 minutes. When simulating defenses, machine and frame-
work budgets are scaled based on set values and tunable defense
limits. In this case, we simulate scaled limits of 1.0, 0.75, and 0.5.
This results in a trade-off line with three data points represent-
ing the trade-off between overhead and accuracy reduction for DF
and RF. We never modify the simulation parameters as part of the
tuning process to ensure ease of comparison between phases.

Parameter tuning was conducted over 11 phases, spanning six
days, and evaluated a total of 356 configurations. In brief, after start-
ing a phase, review the results in the evening before bed and initiate
a new phase overnight. Then, in the morning, repeat the process.
Figure 2 shows the trade-offs in accuracy and overheads between
the start and end configurations. Appendix D contains the complete
git diff between configurations. The tuning, for constraints, favors
server-side padding over client padding, but both with significantly
increased minimums over the starting configuration and reduced
required delay. Changed to computing limits only on actions be-
tween the first and last packet in the trace. For short traces such as
handshakes, this makes total sense (no tail to consider). Increased
granularity by setting a duration reference point with a wide range
of values and significantly increased simulation steps, allowing for
defenses that take many small actions to pass through constraints.
Searched longer by greatly increasing (17×) the maximum attempts
before sampling a new environment and narrowing the number of
traces to 7–11. Likely, this leads to more diverse defenses.

Using the final configuration, we searched for 1,000 defenses and
used those as a basis to evaluate combinations with heights 1–10.
We found no notable difference between heights 2–10, so we picked
height 2. We also observed no gains in limits above 0.75. Finally, we
selected eight limits (for spacing out trade-off lines) and evaluated
them using ten-fold cross-validation, producing Figure 3.

Figure 3 shows the accuracy of DF and RF for different overhead
costs. Note that this is a binary classification problem with balanced
classes, so 50% accuracy serves as the baseline (i.e., guessing). In
terms of overhead, it is the sum of delay and bandwidth. The delay
is at most 85% increased duration. At overhead 10 and below, delay
represents less than 3 seconds of blocking (average undefended
duration 18.2 seconds); the rest is padding. Recall that all traces in
the undefended dataset are capped at 30 cells. This means that a 10×
overhead is 300 cells (150 KiB). At 90% accuracy—representing a
non-negligible false positive rate—the defense increases the average
handshake from 15 KiB to 80 KiB and delays it by an additional
0.9 seconds. Whether this is sufficient or even practical is arguable.
On the one hand, circuits are usually established preemptively in
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Figure 2: Trade-offs comparison between start and end con-
figurations for the Circuit Fingerprinting tuning.

0 5 10 15 20 25
Overhead (bandwidth + delay)

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

RF
DF

Figure 3: An ephemeral Circuit Fingerprinting defense with
tunable protection-overhead (0.5 accuracy baseline).

Tor before being used, so the bandwidth and delay may not impact
the user experience. On the other hand, bandwidth is a precious
resource in the Tor network. It might be worthwhile to optimize
defenses for using delay over padding. We leave this as future work.

Takeaway: Using a straightforward semi-automated tuning
process, ephemeral defenses can provide tunable defense, e.g.,
against Circuit Fingerprinting attacks.

5 WEBSITE FINGERPRINTING
ForWF, we implement and tune seven defenses inMaybenot for two
network models (Section 5.1), evaluate the defenses using five state-
of-the-art WF attacks (Section 5.2), improve the evaluation using
infinite training (Section 5.3), investigate how well trained attacks
generalize across defenses (Section 5.4), and how well parameter-
tuned defenses (Section 5.5) generalize across datasets.

5.1 Defenses and Parameter Tuning
For the sake of accurate comparison, we implement selected related-
work WF defenses in Maybenot. Some defenses are more or less
suitable as state machines, limiting our selection. We stress that our
implementations may have shortcomings, that related work was
not necessarily designed to operate in the settings provided by our
updated Maybenot simulator (e.g., where a network bottleneck may
be present), and that there is ultimately no substitute for real-world
deployment and experimentation.

As representative padding-only defenses we selected Break-
Pad [32], FRONT [21], and Interspace [55]. FRONT, together with
Interspace, were evaluated as on a Pareto front among practical
padding-only defenses studied by Mathews et al. [44]. Break-Pad
and Interspace target the Tor Circuit Fingerprinting framework [53]
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)

and are, therefore, directly portable to Maybenot. For FRONT, we
use the implementation from Maybenot [56].

As representative fixed-rate defenses, we implemented versions
of RegulaTor [31] and Tamaraw [10]. Tamaraw is implemented
with a soft stop condition after a tunable window (in seconds)
of no normal packets sent, as done by Gong et al. for real-world
implementations of WF defenses [23]. The soft stop condition is
motivated by the practical challenge of a network-layer defense
implementation to determine the actual end of application-layer
data. Otherwise, Tamaraw is straightforward to implement as a
state machine. RegulaTor, on the other hand, is far from suitable
as Maybenot state machines due to the need for per-packet timers,
among other issues. We picked RegulaTor in part due to its excellent
performance and in part to demonstrate the limitations ofMaybenot.
We spent considerable time developing and refining a practical
implementation, but there is likely more that can be done.

We parameter-tuned all implementations for the BigEnough [44]
standard dataset, with and without a simulated network bottleneck.
Details are provided in Appendix E, including the final parameters
and additional information on the implementations. Parameters
were generally selected to minimize overheads (while maintain-
ing some defense, in the case of FRONT) or to match overheads
from related work. We weighed delay overhead twice as much as
bandwidth overhead. For FRONT, Interspace, and ephemeral de-
fenses, we created new instances of these defenses for each trace.
The ephemeral defenses use stacked combinations of height 2. Un-
less otherwise stated, all results are from five-fold cross-validation,
where we parameter-tuned on the first fold. Tuning and evaluation
were done independently by different authors.

5.2 Evaluation and Network Bottleneck
We simulate defenses on the BigEnough (standard Tor Browser se-
curity level) dataset in a closed world setting [44] twice: Once with
infinite simulated bandwidth and once with a network bottleneck
based on each trace’s maximum observed PPS in either direction
(see Appendix A). We evaluate defenses in terms of overhead and ac-
curacy. The overhead is in terms of additional bandwidth and delay.
Accuracy comes from five attacks (see Section 2.2.1): Deep Finger-
printing (DF) [69], Robust Fingerprinting (RF) [67], Laserbeak [43],
Laserbeak without attention (Laserbeak−), and DF-multi. Attacks
use their respective default hyperparameters, except for their input
lengths being increased to 10,000 to better capture the majority of
defended traffic (as in related work [43]), unless otherwise stated.
We present the results in Table 1, where ▽ indicates a simulated
bottleneck. Results are split by padding-only and blocking defenses.

When it comes to the simulated network bottleneck, our results
confirm that randomized padding-only defenses also add delay by
causing congestion [79]. Note that we re-tuned the parameters for
all defenses in their bottleneck versions. Break-Pad and FRONT,
due to their bursty padding at the beginning of network traces,
struggle in particular. The same is true for RegulaTor, which proved
challenging to tune, as balancing the send rate caused delays due to
being either too slow, thereby delaying traffic, or too high, which
hit the simulated bottleneck (see Appendix E). Interspace induced
the least additional delay due to the bottleneck, which is notable
since it has no parameters to tune. We stress that our simulator

model might be too conservative and that most defenses in the
literature were not intentionally (or unintentionally) designed with
a network bottleneck between client and server in mind. Real-world
implementations and experiments of these defenses often take the
form of Pluggable Transports (PTs) [23, 31] in Tor, where the net-
work bottleneck in experiments is not between the PT endpoints
but is highly likely to be inside the Tor network.

Takeaway: Defenses should consider network bottlenecks in
their design and evaluation (simulated and real-world experi-
ments) [4, 13, 33–35]; padding-only defenses cause delay [79].

There is a stark difference between padding-only and block-
ing defenses; attacks are highly effective against all padding-only
defenses, with ephemeral defenses offering some protection. Laser-
beak performs exceptionally well in terms of attacks, with slight
differences compared to Laserbeak− . This is in line with Mathews
et al.’s [43] findings that the added value of attention is small at best.
Blocking defenses offer significantly better protection against all
attacks, albeit with higher delays. That defenses need to cause some
overheads in terms of both bandwidth and delay to be effective is
expected [14, 15]. We observe a high deviation in delay overhead for
the ephemeral defenses in the bottleneck model, likely due to the
combination of randomly selecting a defense per trace and varying
actual bottlenecks for each trace. In contrast, the tuning process
focuses on average overheads.

Takeaway: Ephemeral defenses are competitive padding-only
and blocking defenses compared to state-of-the-art.

5.3 Data Augmentation and Infinite Training
Data augmentation and longer training times enhance attacks, es-
pecially against randomized padding-only defenses [43, 44, 55, 64].
Ephemeral defenses can create unique defenses for each simulated
trace in datasets, similar to how randomized defenses like FRONT
and Interspace sample parameters per instantiation. Because of
this, we implement infinite training for all attacks. When a trace is
pulled in the training loop for simulation, a new defense instance
is assigned to it (or, in the case of static defenses, the same de-
fense: This mirrors augmentation in earlier work where the same
defense is simulated multiple times per trace). No epoch limit is
set; the number of times traces are simulated with different (sam-
pled) defenses is not limited. We let the training loop continue until
no improvement in the validation set has been observed for 32
epochs (the termination patience). A minor modification in learn-
ing rate scheduling is necessary; we use the plateau learning rate
scheduler [20] for all attacks. Specifically, when there has been no
improvement in training set loss for eight epochs, the learning rate
is reduced by a factor of 0.8. Otherwise, the default setting of each
attack is preserved. Table 2 shows the result from infinite training
for the same setting as Table 1. The minor differences in overheads
between tables are due to measuring overheads in the final test set,
just like attack accuracies. The training time for different attacks
for Table 2 is shown in Appendix F. In total, it took 27 days of
wall-clock time using a mix of 4070 Ti and L40S GPUs. Laserbeak
and Laserbeak−are only two-fold cross-validated for this reason.
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Table 1: For seven implemented defenses [10, 21, 31, 32, 55] in the Maybenot framework [56], bandwidth and delay overheads,
and attack accuracies from five attacks [43, 67, 69] on the BigEnough standard dataset in a closed world [44]. Results from
five-fold cross-validation. Attacks use a 10,000 input length. The highest average accuracy per defense is highlighted in bold.
▽ indicates a simulated network bottleneck computed for each undefended network trace; otherwise, infinite bandwidth.

BigEnough Accuracy % Overhead %
DF DF-multi Laserbeak Laserbeak− RF Bandwidth Delay

Undefended 89.0±0.8 93.5±0.4 96.4±0.3 96.2±0.2 90.1±0.8 0.0±0.0 0.0±0.0

Pa
dd

in
g-
on

ly

Break-Pad▽ 65.6±0.8 74.7±1.7 88.1±0.8 88.2±0.7 71.7±1.1 75.3±0.4 332.6±30.1
Break-Pad 66.6±0.8 84.4±1.4 89.8±0.7 90.3±0.6 77.9±1.2 75.3±0.4 0.0±0.0
Ephemeral Pad▽ 38.2±1.0 62.0±2.3 74.3±1.3 73.2±1.2 44.1±0.9 64.3±0.4 43.9±7.1
Ephemeral Pad 39.7±0.7 62.3±0.5 75.2±0.9 74.2±0.9 46.6±1.1 58.7±0.5 0.0±0.0
FRONT▽ 79.7±1.3 83.9±0.7 90.8±0.8 90.7±0.5 88.7±1.1 18.2±0.3 111.2±15.0
FRONT 59.2±0.9 76.2±1.0 87.7±1.1 90.0±0.5 90.8±0.9 72.7±1.3 0.0±0.0
Interspace▽ 55.5±2.1 81.4±0.5 87.3±1.1 87.0±1.0 68.6±1.0 56.3±0.6 17.9±8.5
Interspace 55.8±1.2 83.6±0.4 88.3±0.7 88.2±0.5 69.7±0.6 56.3±0.6 0.0±0.0

Bl
oc
ki
ng

Ephemeral Block▽ 14.0±0.6 27.9±1.4 33.2±1.6 34.7±2.1 17.9±0.7 78.8±0.9 123.7±38.2
Ephemeral Block 10.2±0.2 21.8±0.9 25.2±1.9 26.0±1.1 14.7±1.0 97.5±1.1 68.4±0.7
RegulaTor▽ 40.5±0.8 47.3±0.7 51.7±0.9 54.6±0.7 50.1±1.4 38.6±0.2 133.4±5.2
RegulaTor 34.3±1.1 44.6±0.7 47.4±1.5 53.4±1.7 66.4±0.6 89.7±0.7 7.8±0.2
Tamaraw▽ 29.0±0.2 33.5±2.1 34.9±0.9 36.8±0.6 28.5±1.6 127.9±2.8 146.9±11.6
Tamaraw 25.2±0.4 32.0±0.4 30.7±0.7 32.5±1.0 31.1±0.8 129.3±2.8 73.4±0.8

Table 2: A repeat of Table 1, but with infinite training time for the attacks until their validation accuracy stops improving.

BigEnough Accuracy % Overhead %
DF DF-multi Laserbeak Laserbeak− RF Bandwidth Delay

Undefended 92.7±0.3 95.8±0.7 96.5±0.5 97.1±0.1 94.7±0.6 0.0±0.0 0.0±0.0

Pa
dd

in
g-
on

ly

Break-Pad▽ 90.6±0.4 93.7±1.9 96.5±0.1 97.6±0.3 85.0±0.8 75.3±0.4 332.6±30.1
Break-Pad 90.6±0.3 97.1±0.1 97.3±0.3 97.7±0.2 86.8±0.6 75.3±0.4 0.0±0.0
Ephemeral Pad▽ 72.3±1.3 86.2±3.7 92.8±0.2 91.1±1.1 66.2±0.7 64.3±0.4 43.9±7.1
Ephemeral Pad 71.1±0.7 90.9±0.7 93.5±0.2 92.4±0.8 67.0±0.7 58.7±0.6 0.0±0.0
FRONT▽ 94.3±0.5 96.2±0.4 96.9±0.6 96.2±0.3 93.5±0.8 18.2±0.3 111.2±15.0
FRONT 91.8±0.8 95.9±0.3 96.2±0.4 96.3±0.4 94.9±0.9 72.5±1.0 0.0±0.0
Interspace▽ 85.3±0.4 95.1±0.4 94.8±1.2 95.9±0.4 81.4±0.7 56.3±0.6 17.9±8.5
Interspace 85.7±0.6 95.8±0.4 95.9±0.4 96.4±0.4 81.7±0.9 56.7±0.6 0.0±0.0

Bl
oc
ki
ng

Ephemeral Block▽ 37.8±1.0 52.1±5.7 76.1±2.0 62.1±3.3 32.2±2.5 78.8±0.9 123.7±38.2
Ephemeral Block 29.2±1.0 69.6±1.7 71.8±0.8 78.3±0.2 24.3±1.5 97.5±1.1 68.4±0.7
RegulaTor▽ 68.8±0.5 76.9±0.7 69.8±2.9 78.1±0.1 63.5±0.5 38.6±0.2 133.4±5.2
RegulaTor 68.1±0.6 74.7±0.4 73.5±1.1 77.6±1.1 77.7±0.4 89.7±0.7 7.8±0.2
Tamaraw▽ 41.4±0.6 45.7±0.6 45.1±1.6 50.8±0.2 40.5±0.5 127.9±2.8 146.9±11.6
Tamaraw 35.6±0.5 42.9±0.7 39.0±0.5 44.8±0.2 39.5±0.9 129.3±2.8 73.4±0.8

Starting with padding-only defenses, only ephemeral defenses
show a slight accuracy reduction of 3–4% compared to undefended
against Laserbeak. In the same way that DF bypasses the padding-
only defense WTF-PAD [37, 69], we see that Laserbeak does the
same for Break-Pad, FRONT, Interspace, and ephemeral defenses (to
a slightly lesser degree) given enough training time and data. Akin
to the closely related Anonymity Trilemma [14, 15], defense against
WF attacks seemingly requires some degree of explicit bandwidth

and delay overheads. It is an open question if effective and efficient
padding-only defenses are possible in the setting.

Takeaway: Given sufficient training time and data in a sim-
ulated closed-world setting, Laserbeak’s effectiveness against
padding-only defenses is the same as for undefended datasets.

Blocking defenses still provide protection under infinite training.
Tamaraw sees the smallest increase in accuracy between the tables.
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As a constant-rate defense fit (parameter tuned) to the underlying
dataset to minimize overheads, all information leaked is in the tail
from the soft stop condition. Despite that we see 45–51% accuracy,
indicating that the parameter choice for the soft stop condition is es-
sential. Regulator and ephemeral blocking defenses are comparable
in terms of accuracy, with RegulaTor having a lower overall over-
head. Laserbeak, compared to other attacks, is especially effective
against ephemeral blocking defenses, indicating that the Laserbeak
architecture is a key strength in this regard, particularly the atten-
tion layers. We know that it is not the feature representation since
DF-multi does notably worse. For RegulaTor, on the other hand,
all attacks are within 15%. Figure 4 shows that ephemeral block-
ing defenses (no bottleneck) can be tuned, by altering deployment
parameters, to trade overhead for defense against infinite trained
Laserbeak− (the highest accuracy attack for the defense in Table 2).

Takeaway: Blocking-based defenses remain effective, albeit to
a lesser extent, in closed-world simulated evaluations with infi-
nite training. Laserbeak’s architecture is particularly effective
against ephemeral blocking defenses.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Overhead (bandwidth + delay)

0.6
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Figure 4: Ephemeral blocking (infinite network) offers tun-
able defense against Laserbeak− with infinite training.

5.4 Generalizability of Trained Attacks
Tables 1 and 2 involved training and testing a large number of
attacks. The training and testing took place on the same defenses,
i.e., we trained the attack on data from the same defense as we later
tested on. Here, we create attack/defense heatmaps, where we test
each trained attack on every defense. We test both the standard 30
epochs trained and infinitely trained attacks.

Figure 5 shows the results for Laserbeak, with 30 epochs trained
on the left and infinite training to the right. There is a stark impact
on generalizability due to infinite training. For infinite training,
the models trained on ephemeral defenses generalize particularly
well, especially on ephemeral blocking defenses. This is probably
due to the diversity of defenses observed during training. Tama-
raw is the only defense where the models completely fail—likely
because Tamaraw is the only constant-rate defense—a widely dif-
ferent defense strategy. The second-worst defense is RegulaTor,
which uses heavy regularization (related to constant-rate defenses),
further confirming the observation. The resulting heatmaps for
Laserbeak− , DF-multi, RF, and DF are in Appendix G. They show a
similar trend, albeit at lower accuracies.

Takeaway: Attacks trained infinitely on ephemeral defenses
show improved generalizability for randomized defenses, likely
due to the greater diversity in ephemeral defenses.

5.5 The Gong-Surakav Dataset
Parameter tuning of defenses for BigEnough was an elaborate task
(Appendix E). Without re-tuning, we investigate how well the pa-
rameter tuning transfers to the closely related Gong-Surakav [22]
undefended dataset. Table 3 presents the results, which are ob-
tained by performing the same evaluation as earlier on BigEnough
(Table 1) but using the Gong-Surakav dataset instead.

We start with overheads. The bottleneck network model is much
less impactful across the board in terms of delay, with the most dra-
matic decrease for Break-Bad (332.6±30.1%→ 18.9±10.4%), FRONT
(109.7±12.8%→ 3.0±4.0%) and RegulaTor (133.4±5.2%→ 32.7±8.4%).
For the infinite network model, Tamaraw sees a significant in-
crease (73.4±0.8%→ 125.8±1.3%), as do ephemeral blocking defenses
(68.1±0.8%→ 90.2±1.2%) to a lesser extent. For bandwidth, overhead
is down for every defense, especially for padding-only defenses.

In terms of attack accuracy, results are more similar to the infinite
training (Table 2) than the default attack parameters (Table 1). This
can likely be explained by comparing the two dataset structures:
BigEnough contains 95 classes with 20 samples each of 10 subpages
of each website/class (samples of subpages split randomly), while
the Gong-Surakav dataset contains 100 classes with 100 samples
each of the frontpage of each website. Gong-Surakav represents a
much easier classification task, both with more samples per web-
page and with only 100 webpages compared to 950 webpages (over
95 classes) in BigEnough. For padding-only defenses, none of the
defenses provide any significant protection, with a slight edge to
padding-only ephemeral defenses.

For blocking defenses, on the one hand, ephemeral blocking
and Tamaraw behave similarly to the infinite training case. Regula-
Tor, on the other hand, offers protection similar to padding-only
defenses. The parameter tuning of RegulaTor involves fitting the
distribution of one or more incoming bursts of traffic constrained
by a limited budget; this is inherently dataset dependent. Tamaraw,
with the soft stop condition based on a time window of no real
traffic, becomes more robust as a defense. Ephemeral defenses are
more general by virtue of consisting of many different defenses
that fit any dataset to some extent. This is important for practical,
real-world defenses, where the distribution of traffic is not well
known in advance (e.g., defenses for CF deal with amore predictable
distribution than WF, with VF falling somewhere in between).

Takeaway: Defenses with parameters tightly coupled to the
underlying distribution of traffic may deal poorly with out-of-
distribution traffic, analogous to how WF attacks may struggle
in the open-world instead of a closed-world setting.

6 VIDEO FINGERPRINTING
As a benchmark defense for VF, we use Scrambler [26], a state-
of-the-art defense implemented in Maybenot designed explicitly
for video traffic. Scrambler assumes reasonably high bandwidth,
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Figure 5: Accuracy on the BigEnough standard dataset [44] in a closed world for Laserbeak [43] trained on the defense given in
row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

Table 3: A repeat of Table 1 with the same defense and attack parameters, but simulated the Gong-Surakav dataset [22].

Gong-Surakav Accuracy % Overhead %
DF DF-multi Laserbeak Laserbeak− RF Bandwidth Delay

Undefended 96.1±0.4 97.5±0.3 97.6±0.4 97.9±0.5 95.3±0.7 0.0±0.0 0.0±0.0

Pa
dd

in
g-
on

ly

Break-Pad▽ 83.7±0.5 92.4±0.6 94.0±0.7 94.4±0.4 90.8±0.4 46.2±0.2 18.9±10.4
Break-Pad 84.1±0.8 93.3±0.4 94.7±0.8 95.1±0.4 92.0±0.6 46.2±0.3 0.0±0.0
Ephemeral Pad▽ 64.8±1.6 86.9±1.1 90.5±0.5 89.9±0.6 85.0±1.3 53.7±0.4 2.1±2.9
Ephemeral Pad 54.9±3.2 80.0±1.1 87.9±1.4 86.8±0.8 79.9±1.1 52.7±1.1 0.0±0.0
FRONT▽ 92.2±0.6 95.3±0.4 95.5±0.6 96.2±0.6 95.7±0.7 10.8±0.2 3.0±4.0
FRONT 71.5±2.7 86.0±0.7 90.2±0.9 93.0±0.9 95.0±0.7 43.3±0.7 0.0±0.0
Interspace▽ 68.8±1.2 91.3±0.4 93.7±0.6 93.7±0.6 85.8±0.7 52.2±0.4 0.6±0.1
Interspace 67.9±1.7 91.4±0.7 94.0±0.4 93.9±0.5 86.2±0.4 52.2±0.4 0.0±0.0

Bl
oc
ki
ng

Ephemeral Block▽ 23.8±1.7 56.3±1.9 67.8±1.2 65.6±1.7 51.6±1.3 68.5±1.1 73.4±5.6
Ephemeral Block 17.9±0.4 46.4±1.5 55.5±0.6 56.2±0.9 44.4±1.0 81.8±1.5 90.2±1.2
RegulaTor▽ 83.7±0.6 90.6±0.6 92.0±0.9 92.8±0.7 92.2±0.8 22.8±0.2 32.7±8.4
RegulaTor 70.1±1.8 82.4±1.5 87.7±0.4 90.7±0.7 94.0±1.1 54.9±0.4 9.2±0.0
Tamaraw▽ 34.3±0.9 42.4±1.2 39.9±0.9 42.1±0.5 37.0±4.2 115.3±1.4 144.7±15.9
Tamaraw 29.5±0.8 38.2±0.9 32.8±1.1 34.7±0.9 32.5±3.8 121.7±1.5 125.8±1.3

under which overlapping segment downloads are rare. It detects
a segment download via a normal packet event and sends at a
fixed rate (every 𝛿 ms) until 𝑁 packets have been sent, after which
padding is sent until several packets sampled uniformly from the
range [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥 ] can be sent with no intervening data packets,
as a heuristic to detect the end of a segment download.

To evaluate Scrambler and our ephemeral defenses, we utilize
the LongEnough dataset [26], which was collected and used to
evaluate Scrambler. LongEnough consists of 100 movies streamed

with 100 Mbps constant bandwidth (default) and is also available
in an extended version with four variable bandwidth scales (bw1,
bw2, bw4, and bw8). In the latter case, a real-world LTE bandwidth
trace is randomized, scaled by the number in the dataset name, and
used to limit the bandwidth available for streaming during data
collection. We use the strongest parameters reported by Hasselquist
et al. after tuning Scrambler on the default LongEnough settings:
𝛿 = 120, 𝑁 = 1,500, 𝑃𝑚𝑖𝑛 = 400, 𝑃𝑚𝑎𝑥 = 1,000. In their evaluations,
this configuration results in 284% bandwidth overhead.
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Weuse vDF and vRF [11] for attackswith ten-fold cross-validation.
For overheads, we simulate each defense ten times. The variable-
bandwidth datasets of LongEnough inherently capture network
fluctuations, and adding another (simulated) bottleneck may in-
troduce confounding interactions between simulated and dataset-
imposed constraints. Appendix A reports one related suspected
edge case. For ephemeral defenses, we use the ephemeral blocking
defenses for WF from Section 5 without tuning for VF.

Table 4 shows the results. We achieve nearly identical results to
Carlson et al. with vDF and vRF against undefended traffic [11]. Our
simulations of Scrambler align with Hasselquist et al.’s real-world
deployments [26] in terms of bandwidth overhead: They report
284.0% overhead, which is 21.1% higher than our results. The nearly
exponential increase in overhead we see with decreasing bandwidth
is expected, as the parameters we use are not tuned for variable
bandwidth, and all of Scrambler’s parameters are highly sensitive
to bandwidth conditions due to ABR algorithms.

Table 4: Video Fingerprinting on the LongEnough dataset
(default and four with variable bandwidth conditions) [26],
evaluated using vDF and vRF [11]. Scrambler is a SotA VF
defense [26], ephemeral is the ephemeral blocking defense
from Section 5 without any tuning.

LongEnough Accuracy % Overhead %
vDF vRF Bandwidth Delay

U
nd

ef
en
de
d Default 99.6±0.3 100.0±0.0 0.0% 0.0%

bw8 98.5±0.3 99.7±0.2 0.0% 0.0%
bw4 96.8±0.5 98.0±0.4 0.0% 0.0%
bw2 90.2±0.6 93.4±0.7 0.0% 0.0%
bw1 80.7±1.8 87.3±1.1 0.0% 0.0%

Sc
ra
m
bl
er

Default 1.0±0.0 1.0±0.0 262.9±0.0 64.8±0.0
bw8 1.0±0.0 1.0±0.0 459.4±0.0 57.1±0.0
bw4 1.0±0.0 1.0±0.0 810.9±0.1 43.5±0.0
bw2 0.7±0.3 0.9±0.3 1445.6±0.1 31.7±0.0
bw1 0.4±0.4 0.5±0.6 2364.2±0.2 19.9±0.0

Ep
he
m
er
al Default 19.3±1.3 24.6±1.1 134.0±0.8 74.6±0.7

bw8 10.5±1.2 23.6±0.9 154.6±0.8 75.2±0.7
bw4 7.1±1.0 17.8±1.6 164.6±0.8 78.7±0.8
bw2 3.1±0.6 7.8±1.3 175.3±0.8 81.8±9.2
bw1 2.1±0.4 3.3±0.4 187.1±0.7 81.3±11.3

Hasselquist et al. [26] also mention that 1.1% of playback is
spent waiting for a 10-minute video on average, corresponding to
roughly 1.1% delay overhead. The higher overhead we observe is
likely due to aggregated delays in the simulator not fully capturing
the dynamics of continuous traffic and potentially also a result of
the specific traces used during defense evaluation. This suggests
that ephemeral blocking defenses have lower delay overheads than
we report in real-world deployments.

Regarding protection, Scrambler renders vDF and vRF completely
ineffective; the highest accuracy is 1%, equivalent to random guess-
ing. This also aligns with Hasselquist et al.’s conclusion that Scram-
bler provides perfect protection. The efficacy of ephemeral blocking
defenses, on the other hand, depends on the bandwidth scale: vRF

is the most effective attack in all cases. It achieves 25% accuracy
against default LongEnough, with accuracy decreasing (as band-
width increases) to 3% against bw1. This represents a significant
weakening of the attacks at a much lower overhead than Scrambler.
Bandwidth overhead increases from 134% for default to 187% for
bw1, while delay overhead remains relatively stable from 75% to
82%. Thus, ephemeral blocking defenses represent a practical option
for strong protection without Scrambler’s bandwidth overhead or
volatility in variable network conditions.

Takeaway: Ephemeral blocking defenses offer a practical trade-
off between accuracy and overhead in both good and variable
bandwidth conditions for VF, suggesting that they are viable in
situations with long-lasting, continuous traffic.

7 DISCUSSION
In the same way that Section 6 just demonstrated that ephemeral
blocking defenses tuned forWF are viable for VF, Figure 6 compares
the ephemeral blocking WF defense with the tuned ephemeral CF
defense from Section 4. We see that the WF ephemeral blocking
defense offers tunable protection against circuit, video, and web-
site fingerprinting attacks. In settings where the application-layer
traffic is unknown, ephemeral defenses shine. If the application-
layer traffic is known, highly optimized network-layer defenses
offer a better trade-off, e.g., Scrambler for VF, Tamaraw for WF, or
optimizing ephemeral defenses to particular settings such as CF.
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Figure 6: The ephemeral blockingWF defense from Section 5
without any tuning as a CF defense. Compared with the fi-
nally tuned ephemeral CF defense.

Takeaway: By not being tuned/overfitted to attack, dataset,
or network conditions, ephemeral defenses are multipurpose
network-layer defenses against fingerprinting.

One such settingwhere a network-layer technology carries differ-
ent kinds of application traffic is VPNs. In this paper, we have simu-
lated all defenses and attacks for the sake of comparing their relative
strengths and weaknesses. We can briefly report that ephemeral
defenses with Maybenot have been integrated with WireGuard [18]
and deployed in production at REDACTED VPN for about a year,
supporting several thousand (and growing) active daily connec-
tions. While there is much to improve and optimize—and absolute
tuning for deployment remains largely disconnected from relative
tuning for closed-world comparisons [13]—we believe that there is
no substitute for iteration and experience from deployment. The
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defense strategy of ephemeral defenses and the basic methodology
of search presented in this paper are practical and effective. If any-
thing, the user experience is acceptable (as indicated by a growing
number of users), and the protection offered against fingerprinting
and other forms of traffic analysis (with the notable exception of
likely making censorship easier due to WireGuard modifications)
is greater than that of standalone WireGuard.

With ephemeral defenses comes the question of defense distri-
bution. In the VPN case, where there is inherent trust in the VPN
servers, we built an architecture where VPN clients dynamically
receive their defense and configuration (Maybenot machines and
framework limits) upon establishing a connection. VPN servers,
in turn, have a (large) database of ephemeral defenses that are
straightforward to update and can eventually be replaced with
truly unique defenses per connection as we iterate. In the case of
Tor, with distributed trust in relays, the seed-based derivation of
defenses (Section 3.2.1) enables verifiable defense derivation based
on a mutually agreed-upon configuration, e.g., as part of the Tor
consensus. The seed could incorporate the shared random value
from the consensus to ensure freshness. Having both the client and
relay be aware of the defenses of both parties allows them to reason
about received padding from the other party, making it harder to
use padding and blocking actions as a side channel [51].

8 RELATEDWORK
Interspace [55] was developed in part by evolving state machines
using a genetic algorithm within the Tor Circuit Padding Frame-
work [52, 53], which employed an associated simulator and DF
in its learning loop. Our semi-automated tuning (Section 4) simi-
larly uses a simulator, state machines, and DF. Unlike Interspace,
we do not perform manual changes of machines. The manual
changes introduced randomized parameters per instance of In-
terspace. FRONT [21] also uses randomized parameters per in-
stance, i.e., randomized padding budget and padding window. For
ephemeral defenses, every defense is potentially unique.

DeTorrent [30] by Holland et al. employs competing neural net-
works to generate and evaluate traffic analysis defenses, where the
defense utilizes an LSTM that, at time steps based on prior traffic,
determines how much padding to send. While resulting in essen-
tially unique padding defenses, the LSTM is not implementable
as state machines (as Holland et al. note). They also worked on
transferability using the BigEnough dataset (but not across datasets
for WF) and across traffic analysis domains. Similar to how we note
that ephemeral defenses translate well across datasets and domains,
they found that their WF defense was also effective at defending
against Flow Correlation attacks [40, 45, 48, 60, 68, 72, 81].

Another WF defense that results in largely unique defenses is
Surakav byGong et al. [22]. Surakav uses a GAN to generate realistic
traffic patterns and regulates traffic to match those patterns. Like
DeTorrent, Surakav is not implementable as state machines. With
its strict regularization approach, we observe that Surakav is highly
application- and network-dependent.

The Laserbeak [43] closed-world evaluation was also done on
BigEnough, with 10x data augmentation, and with similar attacks
and defenses, albeit our defenses are all implemented in Maybenot.
The results align well with our infinite training results, indicating

that padding-only defenses offer little to no protection. The main
difference is that our more practical implementations of RegulaTor
and Tamaraw showworse protectionwith about 20% higher average
accuracy, likely due to our implementations.

A number of works show that network congestion and (simpli-
fied) simulation can have a significant negative impact on both WF
defenses and attacks in practice [4, 13, 33–35, 79]. This is closely
related to the long-going discussion of the real-world practicality
of WF attacks [36, 50, 78]. Our results align with these observa-
tions in several ways. For one, closed-world defense comparisons
against state-of-the-art attacks, such as Laserbeak, are soon ren-
dered pointless due to near-perfect attack accuracies, at least for
padding-only defenses. Defenses need to induce both bandwidth
and delay [14, 15]. We also note significant differences for defenses
based on (simulated) network conditions and across datasets; ster-
ile lab tuning of defenses generalizes poorly. On the attack side, if
provided sufficient training time, we observe that attacks trained
on ephemeral blocking defenses generalize better across various
defenses and network conditions than if trained on other defenses.

9 CONCLUSION
Ephemeral defenses are multipurpose network-layer defenses that
are not tightly tuned to any particular fingerprinting attack, dataset,
or network conditions. The ephemeral defense strategy introduced
in this paper uses simple methods of defense search and semi-
automated tuning. There is room for improvement. In general,
dynamic selection, generation, or assignment (depending on the
setting) of ephemeral defenses opens up for improved customization
to particular network conditions—reducing the negative impact on
the user experience of defenses—and may deprive attackers of the
capability to train on the exact defense used by users, i.e., shifting
Kerckhoffs’s principle for fingerprinting defenses to treat defenses
like keys instead of public knowledge.
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A SIMULATING AND AGGREGATING DELAYS
IN THE MAYBENOT SIMULATOR

When parsing a base (undefended) trace for use in the Maybenot
simulator, the simulator takes as an argument a network model. The
network model consists of a round-trip time (RTT) and a packets-
per-second (PPS) rate. The RTT is the simulated RTT between the
client and server, while the PPS is the maximum number of packets
per second that can be sent over the network.

During the parsing of a trace, the simulator creates event queues
for both the client and the server. The client event queue consists
of the normal sent events in the base trace since this is the ground

truth for the simulator. The serve event queue, in turn, consists
of sent events for the server to match the recv events at the client
in the base trace. The timestamps in this queue are based on the
RTT, with the server sending packets RTT/2 before they arrive at
the client, matching the base trace.

When building the event queues, we updated the simulator to
also compute the maximum observed PPS in either direction of the
base trace. This per-trace PPS rate is then used by the simulator
in the bottleneck network model. We know, per definition, that
there is some bottleneck between client and destination and that
the packets in the base trace traversed this bottleneck. Here, we
now take the worst-case scenario of modeling this bottleneck as
being between the client and server. How common this scenario
is, depends on where Maybenot is used. For HTTPS, the bottle-
neck is, by definition, somewhere between the client and the server.
For VPNs, the bottleneck is likely between the client and the VPN
server because VPN servers and destinations typically have excel-
lent bandwidth. For Tor, the bottleneck is expected within the Tor
network itself, and therefore, it depends on which relay is running
defenses (e.g., guard, middle, or exit for general circuits).

There are two sources of aggregating delays during simulation
in the simulator: blocking actions and PPS above the bottleneck rate.
The PPS bottleneck can be disabled by setting a large PPS rate. This
is what we do in the “infinite” bandwidth models. The aggregated
delays will accumulate at the client and server, delaying all future
traffic. A key observation for when aggregate delay should come
into effect is that packets already in flight cannot depend on packets
not yet sent. This is similarly discussed in the Tamaraw paper [10]
in the context of enforcing causal ordering of packets and not
violating packet dependencies for simulation. Likewise, we take a
conservative approach to guarantee correctness but at the likely
cost of overestimating delay overheads. For example, the result of
aggregate delay due to blocking or exceeding the bottleneck PPS
at the client will come into effect at the client in 2 ∗ RTT and at
the server in 1.5 ∗ RTT, when assuming the same delay between
destination and server as between client and server.

When active blocking expires, the simulator considers the delta
between the time of the block expiry and when the tail of any
blocked queued burst of packets would have been sent without
blocking. The burst window is one millisecond. We consider the
tail of the burst, assuming that delaying prior packets would not
allow the receiving application to respond any faster until the tail
has arrived. In cases when the burst is large, the PPS bottleneck
may lead to further delays.

When the PPS bottleneck is exceeded, the simulator triggers
aggregate delays of 1/PPS for the last packet sent within a one-
millisecond window. On the one hand, the aggregate delay of 1/PPS
is excessive for lower PPS rates. On the other hand, by only trig-
gering aggregate delays once per window, we underestimate the
delay when a significant number of packets are sent (either due to
rapid padding or long-lived blocking).

There is likely much to be done to improve further the network-
ing side of the simulator, including resolving complex edge cases
involving interactions between aggregate delays and blocking ac-
tions. For example, when running ten-fold cross-validation for the
Video Fingerprinting results in Table 4, we observed that simulation
seed 2 resulted in a significant spike in total average delay with
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ephemeral blocking defenses. To investigate, we ran simulations
with seeds 0–99 (taking four days on an AMD EPYC 7713P 64-Core
Processor). For 95 of the seeds, the delay was below 100%. The
remaining five delays were 170%, 171%, 2855%, and 4919%, with
4919% from seed 2. Inspecting the resulting simulated traces, we
found several outliers where the 10-minute video was simulated to
take days to stream. We suspect this is due to a rare bug involving
cascading aggregate delays. Further refinement on accurate but fast
simulations is needed for ephemeral defenses.

B RANDOMMAYBENOT DISTRIBUTIONS
We distinguish between picking distributions for counts and dura-
tions. For counts, we consider the Uniform, Binomial, Geometric,
Pareto, Poisson, and Weibull distributions. For timeouts, the Uni-
form, Normal, SkewNormal, LogNormal, Pareto, Poisson, Weibull,
and Gamma distributions. Maybenot also supports the Beta distri-
bution, but we found no clear use for it.

Distribution parameters are selected uniformly at random in
relation to a reference point, specifically the count and duration
reference points for their respective distributions. For reference
point 𝑝 where ← denotes uniformly random sampling from an
inclusive range, we sample floats, except for trials in the Binomial
distribution. We often sample parameters starting from 0.001 in-
stead of 0.0 to prevent extreme cases that may slow down sampling
the distribution in practice (with the rand_distr crate1). While
much can probably be improved here, for the ten distributions used,
as a starting point, we selected to use:

Uniform (low, high) 𝑙 ← [0, 𝑝], ℎ ← [𝑙, 𝑝].
Binomial (trials, probability) 𝑡 ← [10,max(𝑝, 11)], 𝑝 ←

[0.001, 1.0]. We enforce 10 trials to get spread in values.
Geometric (probability) 𝑝 ← [0.001, 1.0].
Gamma (scale, shape) scale← [0.001, 𝑝], shape←

[0.001, 10.0]. A shape of 10 already leads to a Normal-like
distribution.

Pareto (scale, shape) scale← max( [𝑝/100.0, 𝑝], 0.001),
shape← [0.001, 10.0]. The maximum shape 10 makes the
distribution less tail-heavy.

Poisson (lambda) 𝑙 ← [0, 𝑝]
Weibull (scale, shape) scale← [0.001, 𝑝], shape← [0.5, 5]. The

shape range captures a wide range of uses.
Normal (mean, stdev) 𝑚 ← [0, 𝑝], 𝑠 ← [0, 𝑝].
SkewNormal (location, scale, shape) location ← [0.5𝑝, 1.5𝑝],

scale ← [𝑝/100, 𝑝/10], shape ← [−5, 5]. The location is
centered around 𝑝 , the scale clustered around 𝑝 (recall that
𝑝 is often very large due toMaybenot operating in microsec-
onds), and the shape range allows the distribution to take
on asymmetric shapes.

LogNormal (mu, sigma) 𝑚𝑢 ← [0, 20.0], 𝑠𝑖𝑔𝑚𝑎 ← [0, 1]. The
range for 𝜇 leads to values from 0 to ≈ 4.85 × 108. A small
sigma leads to modest spread.

1https://crates.io/crates/rand_distr, accessed 2025-04-16.

C EXAMPLE: EPHEMERAL PADDING-ONLY
DEFENSES FOR WEBSITE FINGERPRINTING

To exemplify ephemeral defense search, we introduce the configura-
tion and provide more detail by walking through the configuration
for our ephemeral padding-only defenses for WF evaluated in Sec-
tion 5. The defense search process from Section 3 is implemented
in Rust (like Maybenot) and configured using TOML. The top table
is for the search itself:

1 [search]
2 n = 1_000
3 seed = 0

The search table specifies the number of defenses to find and a
seed for deterministic search. In this paper, we use seed 0 for all
ephemeral defenses as a nothing-up-my-sleeve number throughout.

For each defense to derive, we specify the number of machines
(at client and server) and the maximum number of attempts be-
fore sampling a new environment. The number of machines is a
range, [1, 1], sampled uniformly random (inclusive). Ranges are
used through the configurations. The start of the derive table:

1 [derive]
2 num_machines = [1,1]
3 max_attempts = 50

Deriving multiple machines per side is likely to result in only one
sound machine. It is mainly useful in conjunction with fixed (hard-
coded) machines (not shown here). The maximum attempts param-
eter is important. Typically, it is harder to find defenses in some
areas of the search space in the configuration. On the one hand,
setting a maximum number of attempts can then prevent the search
from getting stuck. On the other hand, too few attempts result in
defenses that only fulfill the constraints in the easier areas.

Next is the machine parameters:
1 [derive.machine]
2 num_states = [3,4]
3 duration_ref_point = [672_000, 950_000]
4 allow_blocking_client = false
5 allow_blocking_server = false
6 allow_expressive = false
7 allow_frac_limits = false
8 allow_fixed_budget = true

For each machine, we will sample uniformly randomly (inclusive)
the number of states. We find little value in more states in ma-
chines while increasing them greatly increases the search space.
One of the most important parameters is the duration reference
point, duration_ref_point, that controls all durations in the state
(Section 3.1). Here, we randomly select a point from 672 ms to 950
ms for each machine (Maybenot operates in microseconds). This
creates a large difference between machines. Finally, we turn off
blocking actions, expressive states, and machine (fractional) limits
while allowing a fixed padding budget. Next is the environment:

1 [derive.env]
2 traces = ["DeepFingerprinting", "GongSurakav"]
3 num_traces = [15, 16]
4 rtt_in_ms = [50, 500]
5 packets_per_sec = [10_000, 20_000]
6 sim_steps = [5_000, 5_000]

The list of string traces maps to hardcoded collections of traces (for
efficiency). In this case, the traces consist of 14 traces from Gong et
al.’s undefended Surakav dataset [22] and 14 traces from the DF [69]
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dataset. Each trace is from a distinct class and selected only on the
basis of consisting of at least 1,000 cells. As the num_traces key
suggests, we found little value in additional traces in our experi-
mentation. As is, between 15–16 out of the 28 traces are selected at
random for each environment. We also experimented with using
traces from the BigEnough [44] dataset, but due to the intentionally
coarse-grained timestamps (10 ms resolution, to prevent attackers
from gaining an advantage), simulations resulted in defenses that
simulated quite differently on datasets with accurate timestamps.

For the simulated network between client and server, we sample
an RTT and PPS. The random RTT between 50–500 ms captures the
variability of Tor circuits. We do not want defenses to get tailored
to particular latencies. The simulated bottleneck of 10,000–20,000
packets per second is, in practice, equivalent to infinite bandwidth,
as most traces are below 5,000 cells over several seconds of fetching
a website over Tor. Finally, we limit the simulator to 5,000 steps.
This is a conservative value in the sense that it allows most sim-
ulations to finish before the entire trace is processed (sending a
normal packet consumes four steps in the simulator, with two at
the sender and two at the receiver). The simulation steps greatly
influence the search space; how depends on the other parameters.
For example, computing constraints over a shorter number of steps
constrain defenses to performing actions early. For defenses target-
ing handshakes, this is desirable, while it may be less so for other
types of defenses where the tail of flows may be informative.

Finally, we express the constraints defenses should fulfill:

1 [derive.constraints]
2 client_load = [0.6, 2.6]
3 server_load = [0.36, 2.4]
4 delay = [0.0, 0.0]
5 client_min_normal_packets = 30
6 server_min_normal_packets = 100

We require the client load (fraction of additional bandwidth) to
be between 0.6–2.6 and the server load between 0.36–2.4, turn off
delay (if min and max are both 0.0), and require a minimum of 30
and 100 normal (non-padding) sent packets from the client and
server, respectively. The minimum load, in particular, is important,
which, in conjunction with the minimal number of normal packets
(at the client, especially), filters out a large number of machines.
Note that these numbers are closely tied to the simulation steps set
in the environment and the environment traces.

D CIRCUIT FINGERPRINTING TUNING
Listing 1 shows the starting configuration for our CF defense search.
The Git diff between starting and final configuration is in Listing 2.

Listing 1: Starting configuration
1 [derive]
2 num_machines = [1,1]
3 max_attempts = 50
4
5 [derive.machine]
6 num_states = [3,4]
7 allow_blocking_client = true
8 allow_blocking_server = true
9 allow_fixed_budget = true
10 allow_expressive = false
11 # count_ref_point
12 # duration_ref_point
13 # min_action_timeout
14

15 [derive.env]
16 traces = ["TorCircuit"]
17 num_traces = [4, 14]
18 rtt_in_ms = [50, 500]
19 packets_per_sec = [10_000, 10_000]
20 sim_steps = [1_000, 1_000]
21
22 [derive.constraints]
23 client_load = [0.5, 10.0]
24 server_load = [0.5, 10.0]
25 delay = [0.5, 5.0]
26 client_min_normal_packets = 0
27 server_min_normal_packets = 0
28 include_after_last_normal = true
29
30 [search]
31 seed = 0
32 n = 1_000
33 max_duration_sec = 900
34
35 [sim]
36 base_dataset = "circuitfp-general-rend"
37 max_samples = 10_000
38 tunable_defense_limits = [1.0, 0.75, 0.5]
39 seed = 0
40
41 [sim.simulator.client]
42 padding_budget = [1000, 1000]
43 blocking_budget = [100_000, 200_000]
44 padding_frac = [0.9, 0.9]
45 blocking_frac = [0.9, 0.9]
46
47 [sim.simulator.server]
48 padding_budget = [1000, 1000]
49 blocking_budget = [100_000, 200_000]
50 padding_frac = [0.9, 0.9]
51 blocking_frac = [0.9, 0.9]
52
53 [sim.simulator]
54 rtt_in_ms = [50, 500]
55 packets_per_sec = [40_000, 40_000]
56 trace_length = 10_000
57 events_multiplier = 1_000

Listing 2: Git diff between starting and end configuration
1 3c3
2 < max_attempts = 50
3 ---
4 > max_attempts = 865
5 12c12
6 < # duration_ref_point
7 ---
8 > duration_ref_point = [23_214, 796_961]
9 17c17
10 < num_traces = [4, 14]
11 ---
12 > num_traces = [7, 11]
13 20c20
14 < sim_steps = [1_000, 1_000]
15 ---
16 > sim_steps = [18_638, 47_942]
17 23,25c23,25
18 < client_load = [0.5, 10.0]
19 < server_load = [0.5, 10.0]
20 < delay = [0.5, 5.0]
21 ---
22 > client_load = [2.78, 3.172]
23 > server_load = [7.051, 9.801]
24 > delay = [0.039, 1.794]
25 28c28
26 < include_after_last_normal = true
27 ---
28 > include_after_last_normal = false
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E PARAMETER TUNING OF WF DEFENSES
We implemented some WF defenses in Maybenot and tuned their
respective parameters to the BigEnough dataset [44]. We repeated
the tuning with and without a simulated network bottleneck be-
tween the client and server. Parameters were generally selected to
minimize overhead, with delay overhead being weighed twice as
much as bandwidth overhead. Table 5 contains the final hyperpa-
rameters. We used the first (out of five) folds for tuning for those
defenses where parameter selection has significant implications
for defense efficacy. For defense efficacy, we used DF and RF with
default hyperparameters and patience 10 for early stopping. Addi-
tionally, DF was modified to use up to 10,000 cells (from its original
5,000). RF parsed the first 80 s of each trace (the average undefended
trace is 28.1 s in BigEnough standard).

The simulated RTT between client and server (middle relay, not
to be mistaken for the destination website) were uniformly ran-
domly selected per trace between [50, 500] ms. All defenses showed
similar results for a fixed RTT of 250 ms on the final parameters.
The randomized defenses (Break-Pad, FRONT, and Interspace) sim-
ulated up to 40,0000 cells. In comparison, the fixed-rate defenses
needed 200,000 cells to ensure that all normal (non-padding) cells
from the original traces were included in the defended traces.

E.1 Break-Pad and Interspace
Both Break-Pad [32] and Interspace [55] target Tor’s Circuit Padding
Framework [52, 53], so implementation in Maybenot is straight-
forward. Break-Pad has no parameters to tune. Interspace has no
parameters to tune, but several parameters are randomized on in-
stantiation of the defense. We, therefore, created 100,000 instances
of the defense, and for each trace in BigEnough (19,000 with no
augmentation), we randomly selected an instance.

E.2 FRONT
We use the implementation of FRONT [21] from Maybenot [56].
FRONT is randomized like Interspace, so we created 100,000 in-
stances to randomly select from per trace. For the parameters,
we did a grid search of 𝑊𝑚𝑖𝑛 ∈ {1, 5, 10}, 𝑊𝑚𝑎𝑥 ∈ {12, 15, 20},
𝑁𝑆 = 𝑁𝐶 ∈ {1500, 1700, 2000, 2500, 3000, 6000}, and the number of
states to approximate the Rayleigh distribution 𝑆 = {1, 10, 100}. For
FRONT with infinite bandwidth, we found bandwidth overheads
0.18–0.75, selecting parameters in the higher range that gave the
best defense against DF (no parameter selection got RF below 0.9).
With a simulated bottleneck, we opted for the parameters with the
lowest overhead (incidentally, the lowest delay overhead).

E.3 Tamaraw
For Tamaraw [10], we did a grid search 𝑃𝐶 ∈ [0.005, 0.03] in 0.005
increments, 𝑃𝑆 ∈ [0.0015, 0.0055] in 0.005 increments, using default
𝐿 = 100 (clear trade-off parameter, no point in tuning), and𝑊 ∈
{2, 4, 6} seconds. The stop window𝑊 is from Gong et al.’s soft stop
condition for real-world implementations of WF defenses [23].

E.4 RegulaTor
We implemented a version of RegulaTor [31] in Maybenot. Exact im-
plementation is not possible due to state machine restrictions. This
has been done in related work [26, 56, 57]. On the client, ensuring

that packets are never queued for more than 𝑐 seconds requires us
to flush all outgoing queued packets instead of just the one delayed
for 𝑐 seconds. For most website datasets, this difference should be
negligible due to light upload traffic. On the server, the main short-
comings of our implementation are discretizing the decaying send
rate into bins and the inability to send only individually queued
packets once the padding budget is consumed. As for the client, we
flush all queued packets according to the packet rate.

E.4.1 Infinite Bandwidth. We started hyperparameter tuning with
infinite bandwidth to find parameters resulting in approximately
92% load and 7% delay—the same overhead as for the tuned Reg-
ulaTor on BigEnough in the Laserbeak paper [43]. Because of the
excessive search space, we did the tuning in phases, using RegulaTor
heavy parameters as a starting point.

(1) Searched the number of bins for the server-side,𝑏 ∈ {10, 50,
100, 1000}. Too fined-grained binning may lead to delayed
surges. Anticipating challenges around keeping delay ac-
ceptable, we opted for a low bin count of 𝑏 = 10.

(2) Grid searched 𝑢 ∈ {3.53.954.0, 4.5} and 𝑐 ∈ {0.5, 1.0, 1.5,
1.77, 2.0} for the client. We saw the lowest delay with 𝑢 =

4.5 and 𝑐 = 1.0.
(3) Motivated by relatively low load and high delays, grid

searched 𝑟 ∈ {200, 277, 300, 400, 600, 800, 1000, 1200} and
𝑛 ∈ {2000, 3000, 3550, 4000, 5000, 6000}. For 𝑟 ≤ 400 we
note high delays, while 𝑟 ≥ 600 allowed for a range of
trade-offs in load and delay based on varying 𝑛. We there-
fore fixed 𝑟 = 600.

(4) Varied 𝑛 as in phase three, but this time also running RF
and DF. We observe a clear relationship between padding
budget and attacker success. We set 𝑛 = 5000 because the
load is still below our target, and we need to reduce delay.

(5) Grid searched 𝑑 ∈ {0.9, 0.92, 0.94, 0.96, 0.98} and 𝑡 ∈ {1.0,
1.5, 2.0, 2.5, 3.0, 3.55, 4.0}. Delay is minimized with 𝑑 = 0.98
and 𝑡 = 2.5 with little difference in load.

(6) To attempt to get delay further down, grid searched 𝑐 ∈
{0.5, 1.0}, 𝑟 ∈ {600, 700}, and 𝑛 𝑖𝑛{5000, 6000}. Delay is
minimized with 𝑐 = 0.5, 𝑟 = 700, and 𝑛 = 5000.

(7) We search 𝑟 ∈ {700, 800, 900, 1000, 1100, 1200}. With 𝑟 =

1200 we hit our target 7% delay. Load is 83%.
(8) We search 𝑛 ∈ [5000, 6000] in 100 increments. With 𝑛 =

5600 we have load 93% and delay 8%.
The final parameters for infinite RegulaTor are: 𝑢 = 4.5, 𝑐 = 0.5,
𝑟 = 1200, 𝑑 = 0.98, 𝑡 = 2.5, 𝑛 = 5600 with 𝑏 = 10.

E.4.2 Network Bottleneck. We use the final parameters for infinite
RegulaTor as a starting point. Recall that the difference between
infinite and bottleneck is that each trace will now have a PPS bot-
tleneck equal to the PPS needed for each trace.

(1) Baseline gives 93% load and 1938% delay. Because the PPS
in the bottleneck is symmetric and sent at the client is a
subset of sent from the server, we can rule out client-side
parameters. The main parameter that controls the peak PPS
from the server is the rate 𝑟 .

(2) We set 𝑛 = 10 to capture the case when the rate is irrelevant
(because the server sends no padding). We get 5% load and
2% delay.
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Table 5: Final defense hyperparameters tuned for BigEnough with infinite and ▽bottleneck network models.

Defense Parameters

Pa
dd

in
g-
on

ly
Break-Pad —
Break-Pad▽ —
Ephemeral padding-only Listing 3
Ephemeral padding-only▽ Listing 4
FRONT 𝑁𝑆 = 𝑁𝐶 = 6000,𝑊𝑚𝑖𝑛 = 5,𝑊𝑚𝑎𝑥 = 12, 𝑆 = 1
FRONT▽ 𝑁𝑆 = 𝑁𝐶 = 1500,𝑊𝑚𝑖𝑛 = 5,𝑊𝑚𝑎𝑥 = 15, 𝑆 = 10
Interspace —
Interspace▽ —

Bl
oc
ki
ng

Ephemeral blocking Listing 5
Ephemeral blocking ▽ Listing 6
RegulaTor 𝑈 = 4.5, 𝐶 = 0.5, 𝑅 = 1200, 𝐷 = 0.98, 𝑇 = 2.5, 𝑁 = 5600, 𝐵 = 10
RegulaTor▽ 𝑈 = 4.5, 𝐶 = 0.5, 𝑅 = 220, 𝐷 = 0.98, 𝑇 = 2.5, 𝑁 = 2000, 𝐵 = 10
Tamaraw 𝑃𝐶 = 0.01, 𝑃𝑆 = 0.005, 𝐿 = 100,𝑊 = 2
Tamaraw▽ 𝑃𝐶 = 0.01, 𝑃𝑆 = 0.0055, 𝐿 = 100,𝑊 = 2

(3) We search 𝑟 ∈ [100, 1200] in 100 increments. Interestingly,
𝑟 = 100 gives 1930% delay, 𝑟 = 200 277% delay, and 𝑟 = 300
303% delay. This suggests some minima where a too-low
rate leads to cascading aggregate delays and a too-high rate
hits too many PPS bottlenecks.

(4) We search 𝑟 ∈ [100, 300] in 10 increments. At 𝑟 = 220, we
get 267% delay and 88% load.

(5) We search 𝑛 ∈ [500, 5000] in 500 increments and run DF
and RF. At 𝑛 = 2000, we get 138% delay, between Tamaraw
and Ephemeral blocking bottleneck delays.

In gist, RegulaTor gets stuck between having a surge spike too high—
hitting the PPS bottleneck—and sending traffic too slow, leading
to delays due to excessive blocking. Part of this might be short-
comings in our port of RegulaTor to Maybenot. Ideally, one would
want a mechanism to set the rate based on the observed bottleneck
dynamically. That related work implementations did not encounter
this is likely due to being implemented as Pluggable Transports
(PTs) [23, 31]. The PT endpoints were run outside the Tor network
with the PT server as a bridge. In this scenario, the network bot-
tleneck between client and destination is likely somewhere within
the Tor network and not between PT client and server, doubly so
in experimental settings with no shared use of the PT server.

E.5 Ephemeral Defenses
The ephemeral defenses for EF were tuned in the same manner as
the CF defenses in Section 4. The process was less structured as
it took place in parallel with the development of the tooling for
ephemeral search and tuning presented in this paper. We present
the configurations for the final defenses below. They also use height
2 like the CF defenses.

Listing 3 shows the final configuration for the ephemeral padding-
only defenses with the infinite network model. Listing 4 shows
the diff between the infinite and bottleneck network models for
padding-only defenses. Listing 5 shows the final configuration for
the ephemeral blocking defenses with the infinite network model.
Listing 6 shows the diff between the infinite and bottleneck network
models for blocking defenses.

Listing 3: Ephemeral padding-only infinite network model
1 [derive]
2 num_machines = [1,1]
3 max_attempts = 50
4
5 [derive.machine]
6 num_states = [3,4]
7 duration_ref_point = [672_000, 950_000]
8 allow_blocking_client = false
9 allow_blocking_server = false
10 allow_expressive = false
11 allow_frac_limits = false
12 allow_fixed_budget = true
13
14 [derive.env]
15 traces = ["DeepFingerprinting", "GongSurakav"]
16 num_traces = [15, 16]
17 rtt_in_ms = [50, 500]
18 packets_per_sec = [10_000, 20_000]
19 sim_steps = [5_000, 5_000]
20
21 [derive.constraints]
22 client_load = [0.6, 2.6]
23 server_load = [0.36, 2.4]
24 delay = [0.0, 0.0]
25 client_min_normal_packets = 30
26 server_min_normal_packets = 100
27
28 [search]
29 seed = 0
30 n = 1000
31
32 [combo]
33 n = 100_000
34 height = 2
35 max_attempts = 50
36
37 [combo.env]
38 traces = ["DeepFingerprinting", "GongSurakav"]
39 num_traces = [15, 16]
40 rtt_in_ms = [50, 500]
41 packets_per_sec = [10_000, 20_000]
42 sim_steps = [5_000, 5_000]
43
44 [combo.constraints]
45 client_load = [0.6, 2.6]
46 server_load = [0.36, 2.4]
47 delay = [0.0, 0.0]
48 client_min_normal_packets = 30
49 server_min_normal_packets = 100
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50
51 [sim]
52 base_dataset = "bigenough-95x10x20-standard-rngsubpages/"
53 max_samples = 100
54 tunable_defense_limits = [0.75]
55 seed = 0
56
57 [sim.simulator]
58 rtt_in_ms = [50, 500]
59 packets_per_sec = [40_000, 40_000]
60 trace_length = 60_000
61 events_multiplier = 1_000
62
63 [sim.simulator.client]
64 padding_budget = [1_000, 2_000]
65 blocking_budget = [0, 0]
66 padding_frac = [0.95, 0.95]
67 blocking_frac = [0, 0]
68
69 [sim.simulator.server]
70 padding_budget = [1_000, 3_000]
71 blocking_budget = [0, 0]
72 padding_frac = [0.95, 0.95]
73 blocking_frac = [0, 0]

Listing 4: Git diff padding-only infinite and bottleneck net-
work model

1 3c3
2 < max_attempts = 50
3 ---
4 > max_attempts = 769
5 7c7,9
6 < duration_ref_point = [672_000, 950_000]
7 ---
8 > duration_ref_point = [247_000, 320_000]
9 > min_action_timeout = [196, 396]
10 > count_ref_point = [254, 469]
11 16c18
12 < num_traces = [15, 16]
13 ---
14 > num_traces = [12, 17]
15 18c20
16 < packets_per_sec = [10_000, 20_000]
17 ---
18 > #packets_per_sec = [10_000, 20_000]
19 22,23c24,25
20 < client_load = [0.6, 2.6]
21 < server_load = [0.36, 2.4]
22 ---
23 > client_load = [2.2, 2.8]
24 > server_load = [1.0, 2.5]
25 25c27
26 < client_min_normal_packets = 30
27 ---
28 > client_min_normal_packets = 33
29 35c37
30 < max_attempts = 50
31 ---
32 > max_attempts = 769
33 39c41
34 < num_traces = [15, 16]
35 ---
36 > num_traces = [12, 17]
37 41c43
38 < packets_per_sec = [10_000, 20_000]
39 ---
40 > #packets_per_sec = [10_000, 20_000]
41 45,46c47,48
42 < client_load = [0.6, 2.6]
43 < server_load = [0.36, 2.4]
44 ---
45 > client_load = [2.2, 2.8]
46 > server_load = [1.0, 2.5]
47 48c50
48 < client_min_normal_packets = 30
49 ---

50 > client_min_normal_packets = 33
51 54c56
52 < tunable_defense_limits = [0.75]
53 ---
54 > tunable_defense_limits = [0.5]
55 59c61
56 < packets_per_sec = [40_000, 40_000]
57 ---
58 > #packets_per_sec = [40_000, 40_000]
59 73a76
60 >

Listing 5: Ephemeral blocking infinite network model
1 [derive]
2 num_machines = [1,1]
3 max_attempts = 711
4
5 [derive.machine]
6 num_states = [3,4]
7 duration_ref_point = [290_000, 966_000]
8 allow_blocking_client = true
9 allow_blocking_server = true
10 allow_expressive = false
11 allow_frac_limits = false
12 allow_fixed_budget = true
13
14 [derive.env]
15 traces = ["DeepFingerprinting", "GongSurakav"]
16 num_traces = [9, 11]
17 rtt_in_ms = [50, 500]
18 packets_per_sec = [10_000, 20_000]
19 sim_steps = [5_000, 5_000]
20
21 [derive.constraints]
22 client_load = [1.5, 7.5]
23 server_load = [0.9, 7.4]
24 delay = [0.5, 5.0]
25 client_min_normal_packets = 30
26 server_min_normal_packets = 100
27 include_after_last_normal = true
28
29 [search]
30 n = 1_000
31 seed = 0
32
33 [combo]
34 n = 100_000
35 height = 2
36 max_attempts = 711
37
38 [combo.env]
39 traces = ["DeepFingerprinting", "GongSurakav"]
40 num_traces = [9, 11]
41 rtt_in_ms = [50, 500]
42 packets_per_sec = [10_000, 20_000]
43 sim_steps = [5_000, 5_000]
44
45 [combo.constraints]
46 client_load = [3.0, 4.0]
47 server_load = [1.0, 2.0]
48 delay = [0.5, 5.0]
49 client_min_normal_packets = 30
50 server_min_normal_packets = 100
51 include_after_last_normal = true
52
53 [sim]
54 base_dataset = "bigenough-95x10x20-standard-rngsubpages/"
55 max_samples = 100
56 tunable_defense_limits = [0.75]
57 seed = 0
58
59 [sim.simulator]
60 rtt_in_ms = [50, 500]
61 packets_per_sec = [40_000, 40_000]
62 trace_length = 60_000
63 events_multiplier = 1_000
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64
65 [sim.simulator.client]
66 padding_budget = [1_000, 2_000]
67 blocking_budget = [100_000, 200_000]
68 padding_frac = [0.95, 0.95]
69 blocking_frac = [0.5, 0.5]
70
71 [sim.simulator.server]
72 padding_budget = [1_000, 3_000]
73 blocking_budget = [100_000, 200_000]
74 padding_frac = [0.95, 0.95]
75 blocking_frac = [0.5, 0.5]

Listing 6: Git diff blocking infinite and bottleneck network
model

1 3c3
2 < max_attempts = 711
3 ---
4 > max_attempts = 900
5 6c6
6 < num_states = [3,4]
7 ---
8 > num_states = [3,3]
9 18c18
10 < packets_per_sec = [10_000, 20_000]
11 ---
12 > #packets_per_sec = [10_000, 20_000]
13 36c36
14 < max_attempts = 711
15 ---
16 > max_attempts = 900
17 42c42
18 < packets_per_sec = [10_000, 20_000]
19 ---
20 > #packets_per_sec = [10_000, 20_000]
21 46,47c46,47
22 < client_load = [3.0, 4.0]
23 < server_load = [1.0, 2.0]
24 ---
25 > client_load = [1.5, 7.5]
26 > server_load = [0.9, 7.4]
27 61c61
28 < packets_per_sec = [40_000, 40_000]
29 ---
30 > #packets_per_sec = [40_000, 40_000]

F MODEL TRAINING TIMES
Table 6 shows the running time in the infinite training scenario
from Section 5.3. In total 634 hours—almost a month of walltime.
While examining the table, it is important to note that the defense
simulation load plays a role here. That is, runtime comparison
between models can only be interpreted while keeping a defense
fixed, as each defense introduces a different overhead on the overall
runtime due to simulation time.

For the 30 epoch scenario, we have training times: DF 3.6 min,
DF-multi 4.5 min, Laserbeak 32 min, Laserbeak− 16 min, RF 3.2 min.
In both cases, 30 epochs and infinite training, a fair comparison of
the training times becomes hindered by Laserbeak’s large vRAM
usage, leading to those runs having separate hardware compared
to others (DF, df-multi, Laserbeak− , RF). Laserbeak was evaluated
using an AMD EPYC 7R13 and an NVIDIA L40S (AWS instance
type g6e.4xlarge), while the others used an AMD Ryzen 9 7950X
and an NVIDIA RTX 4070 Ti.

G CROSS ATTACK/DEFENSE HEATMAPS
For the cross attack/defense heatmaps in Section 5.4, Figure 7
shows the heatmap for DF [69], Figure 8 for RF [67], Figure 9 for
DF-multi [43], and finally Figure 10 for Laserbeak without atten-
tion [43].
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Table 6: Running time per xv fold during infinite training.

BigEnough Training time (h)
DF DF-multi Laserbeak Laserbeak− RF

Undefended 0.3±0.0 0.8±0.2 5.5±0.1 2.7±0.3 0.5±0.1

Pa
dd

in
g-
on

ly
Break-Pad▽ 0.9±0.1 0.6±0.2 7.1±0.8 3.9±0.3 1.0±0.1
Break-Pad 0.8±0.1 1.2±0.2 7.7±1.7 3.8±0.4 0.8±0.1
Ephemeral Pad▽ 1.7±0.2 0.5±0.2 5.6±0.4 2.1±0.9 1.8±0.2
Ephemeral Pad 2.3±0.3 1.9±0.4 6.7±0.1 3.6±0.0 2.3±0.2
FRONT▽ 0.4±0.1 0.7±0.1 5.1±0.5 2.3±0.6 0.7±0.1
FRONT 0.5±0.1 0.9±0.1 5.9±0.4 2.9±0.3 0.6±0.1
Interspace▽ 1.2±0.2 0.9±0.1 5.8±3.5 2.3±0.1 0.8±0.2
Interspace 1.2±0.1 1.2±0.1 8.3±0.1 4.0±0.2 0.8±0.1

Bl
oc
ki
ng

Ephemeral Block▽ 2.2±0.2 0.5±0.2 5.9±1.0 1.1±0.0 2.2±0.5
Ephemeral Block 2.8±0.4 2.1±0.4 8.8±1.7 4.8±0.7 1.9±0.3
RegulaTor▽ 1.1±0.1 1.8±0.2 7.1±1.3 2.3±0.0 1.7±0.2
RegulaTor 1.8±0.2 2.6±0.3 10.1±3.4 3.9±0.0 3.2±0.6
Tamaraw▽ 0.6±0.1 0.7±0.1 5.2±0.1 1.8±0.1 1.7±0.4
Tamaraw 0.5±0.0 1.0±0.1 4.4±0.2 1.6±0.2 1.8±0.3

Figure 7: Accuracy on the BigEnough standard dataset [44] in a closed world for Deep Fingerprinting [69] trained on the defense
given in row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.
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Figure 8: Accuracy on the BigEnough standard dataset [44] in a closed world for Robust Fingerprinting [67] trained on the
defense given in row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

Figure 9: Accuracy on the BigEnough standard dataset [44] in a closed world for DF-multi [43] trained on the defense given in
row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.
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Figure 10: Accuracy on the BigEnough standard dataset [44] in a closed world for Laserbeak without attention [43] trained on
the defense given in row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.
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