
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Ephemeral Network-Layer Fingerprinting Defenses
Anonymous Author(s)

ABSTRACT
Fingerprinting attacks on encrypted network traffic may reveal
sensitive information about users of anonymous communication
systems, such as visited websites or watched videos, linking users’
activities to their identities. Defenses come at the cost of bandwidth
and delay overheads, impacting the user experience and making
wide-scale deployment challenging. There is a rich history of at-
tacks and defenses, with continual improvements in deep learning
as a catalyst, making deployment of defenses an ever more pressing
matter. This paper introduces a new defense strategy against fin-
gerprinting attacks—ephemeral defenses—where efficient defense
search enables the generation of unique per-connection defenses.
We demonstrate that ephemeral defenses aremultipurpose network-
layer defenses against circuit, website, and video fingerprinting
attacks, achieving competitive performance compared to related
work. Furthermore, we create tunable ephemeral defenses that are
not overly specialized to a particular fingerprinting attack, dataset,
or network conditions. Ephemeral defenses are practical, demon-
strated through integration with WireGuard and deployment at
REDACTED VPN for a year, serving thousands of daily users.

KEYWORDS
anonymous communication, fingerprinting, network simulation

1 INTRODUCTION
The exact program logic of effective and efficient network traffic
fingerprinting defenses is complex. This should come as no surprise,
as the community has been working on defenses against finger-
printing attacks for decades [8, 12, 28, 29, 39, 41, 65, 71]. To make
matters worse, advances in deep learning over the last decade have
significantly enhanced fingerprinting attacks performed by rela-
tively weak local, passive eavesdroppers, who observe patterns in
encrypted traffic [7, 43, 47, 59, 63, 66, 67, 69]. While the real-world
threat of attacks remains debated [4, 13, 34, 36, 49, 50, 78], advances
in attacks have made it more challenging to find effective defenses
while minimizing bandwidth and latency overheads [14, 15].

This paper builds from the insight that the probability of random
program logic serving as a decent fingerprinting defense increases
substantially if the program can be expressed within a framework
dedicated to traffic analysis defenses [19, 23, 53, 56, 70, 77]. When
constrained in expressivity—as opposed to general-purpose frame-
works like WFDefProxy [23] (which runs arbitrary Go programs)—
such a framework acts as a domain-specific language, defining a
search space of possible defenses that can be expressed within it.
For this work, we picked the Maybenot framework [56] with roots
in the practical Tor Circuit Padding Framework [53] and traffic

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–23
© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

analysis literature [37, 68], where defenses are expressed as proba-
bilistic finite state machines. This structure allows us to efficiently
generate and deploy randomized defenses from this search space.

Due to the use of a restricted framework, the search space is
densely populated with potential defenses. However, instead of
exhaustively searching this space for the best defense, we flip the
script and search formany defenses that fulfill some basic overhead
constraints in a simulated environment. The many defenses are
then assessed on how well they defend against attacks in aggregate,
with each session (or trace) randomly selecting a defense. This
search process is sufficiently efficient to enable what we introduce
as ephemeral defenses; defenses used only once per trace (e.g., a
Tor circuit), similar to how ephemeral keys are used in TLS [62].
This novel defense property prevents attackers from training on the
exact defenses used, enhancing resilience against adaptive attacks.

The overarching contribution of this paper is the introduction
and demonstration of multipurpose, network-layer ephemeral
defenses: defenses that are not tightly tuned to any particular
fingerprinting attack, dataset, or network conditions. These
defenses apply to circuit, website, and video fingerprinting attacks,
offering tunable trade-offs between bandwidth/delay and defensive
effectiveness against state-of-the-art attacks. While our evaluations
in the paper are based on simulation, ephemeral defenses are prac-
tical: they have been integrated with WireGuard [18] and deployed
by REDACTED VPN for a year, serving thousands of daily users [3].

In support of the broader contribution of ephemeral defenses,
the paper presents the following specific technical contributions:

• A search method for ephemeral fingerprinting defenses
based on deriving random Maybenot machines that fulfill
constraints in simulated environments that can be com-
bined with polynomial growth and deployed with tunable
overhead-defense trade-offs (Section 3).

• A semi-automated tuning process, showing that ephemeral
defenses can provide tunable defense against Circuit
Fingerprinting attacks in Tor significantly improving
over existing deployed defenses (Section 4).

• A comprehensive set of Website Fingerprinting (WF) ex-
periments that demonstrate that ephemeral defenses can
be tuned along the Pareto front of practical padding-
only and blockingWF defenses, provide insights into how
the increasingly rich feature representations and architec-
tures of state-of-the-art WF attacks push the boundaries
of closed-world evaluations, and highlight the fragility of
defense and attack tuning on results and consequently real-
world practicality of WF defenses (Section 5).
• Demonstrate that ephemeral blocking defenses provide a

practical trade-off between attack accuracy and over-
head for Video Fingerprinting without tuning (Section 6).

Section 7 reflects on our results, including real-world deployment
of ephemeral defenses. Section 8 covers key related work, and
Section 9 concludes. We begin with background in Section 2.

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 BACKGROUND
Traffic analysis of encrypted network tunnels can have the goal
of identifying—fingerprinting—the type of circuit used in Tor (Cir-
cuit Fingerprinting, Section 2.1), the website being visited (Website
Fingerprinting, Section 2.2), and the video being watched (Video
Fingerprinting, Section 2.3). In those sections, we describe both
state-of-the-art attacks and defenses, noting that common defenses
typically fall into two categories: padding-only defenses, which
inject dummy traffic to obscure patterns, and blocking defenses,
which also delay traffic to control timing leakage. Finally, we intro-
duce Maybenot, a defense framework that expresses both types of
defenses as probabilistic state machines (Section 2.4).

Following standard practices of most prior fingerprinting works,
throughout the paper, regardless of the fingerprinting attack con-
sidered, we assume a local, passive network adversary that can
observe packet timings and sizes but cannot modify, drop, or delay
traffic [39, 44, 61]. Furthermore, in a closed-world setting, there is
a fixed number of classes (e.g., representing websites) on which
attacks are trained and tested. We use average accuracy to measure
the effectiveness of attacks in closed-world settings throughout,
as our goal is to compare the relative strengths and weaknesses of
defenses, rather than assess the absolute performance of attacks in
the more realistic open-world setting [4, 13, 34, 36, 49, 50, 78].

2.1 Circuit Fingerprinting
In Tor, circuits are created and used for different purposes. There
are four widely used purposes, with a fifth relatively recently added:
general, introductory, rendezvous, HSDir, and Conflux [75]. General
and rendezvous circuits may carry significant application-layer
data (Conflux can carry both). In contrast, introductory and HSDir
circuits typically transport less data when connecting to an onion
address (trivial distinguisher). There are more general circuits than
rendezvous circuits in Tor [42], subject to some base rate.

2.1.1 Attacks. The purpose of a circuit can be reliably finger-
printed [39], despite deployed defenses [24, 38, 51, 73]. Syverson et
al. [73] recently used Deep Fingerprinting [69] for this purpose.

2.1.2 Defenses. As part of the Tor Circuit Padding Framework [52,
53], two padding machine defenses are deployed in Tor: One at-
tempts to make introductory circuits appear as HSDir circuits and
the other to make rendezvous circuits look like general circuits.
Both remain fingerprintable today [38, 51, 73]. Kadianakis et al.
began laying the groundwork for improved defenses [38], but to
our knowledge, none have yet been implemented or deployed.

2.2 Website Fingerprinting
Traffic analysis of encrypted tunnels (that hide destination IP-
addresses, otherwise trivial [5]) to fingerprint visited websites is
referred to as Website Fingerprinting (WF) [12, 28, 29, 41, 71].

2.2.1 Attacks. Attacks can be grouped by relying on manual fea-
ture engineering—such as k-fingerprinting [27] and CUMUL [49]—
or automatic feature engineering using deep learning [1, 63, 69]. We
consider three deep-learning-based attacks: Deep Fingerprinting
(DF) [69], Robust Fingerprinting (RF) [67], and Laserbeak [43].

DF was the first deep-learning-based attack to significantly im-
pact defense design, achieving high (90%+) accuracy against the
WTF-PAD [37] defense, which protects against k-fingerprinting
and CUMUL. DF uses only the direction of cells from a network
trace as its feature representation, ignoring time.

While earlier attacks, such as Tik-Tok [59], successfully incor-
porated time into DF’s feature representation (with directional
time), the next generational leap comes from RF, which improved
attack robustness in the presence of defenses thanks to its Traffic
Aggregation Matrix (TAM) representation. With TAM, there are
two channels of features that count sent and received packets, re-
spectively, in bins with a resolution of 10–60 ms. This two-channel
robust feature representation negates many defenses [67].

Building on the success of multi-channel feature representations,
Laserbeak [43] introduces six channels (“multi”) with complement-
ing feature representations, the use of attention with transformers,
and various training and architectural improvements. Mathews et
al. provide three versions: DF-multi, Laserbeak without attention,
and Laserbeak. DF-multi is DF with enhanced feature representa-
tions and improved training. Laserbeak without attention removes
the transformer from the architecture, significantly improving exe-
cution time. We include all three versions.

2.2.2 Defenses. WF defenses employ a combination of padding
traffic (bandwidth) and blocking (delay) to transform traffic toward
some goal. Mathews et al. [44] group WF defenses into five groups:
adversarial perturbation defenses, collision defenses, fixed-rate de-
fenses, splitting defenses, and randomized defenses.

There are three groups of defenses that we do not consider in
this paper but explain for the sake of completeness. Adversarial
perturbation defenses aim to trick ML-based models used by ad-
versaries. Typically, these defenses consider weak non-adaptive
adversaries [44] and are limited to particular classes of attacks.
Traffic splitting defenses assume that clients have one or more
unobservable paths, therefore only defending against weak adver-
saries [6]. Collision defenses require a database of reference traces
or similar to coordinate collisions between groups of websites [44].

This leaves fixed rate and randomized defenses. As the name
suggests, fixed-rate defenses send traffic at some (potentially adap-
tive) fixed rate in both directions. Padding is sent if no real traffic is
available, and real traffic is blocked until the defense dictates that
traffic should be sent. Therefore, such defenses suffer from high
overheads, particularly regarding delay [44]. Randomized defenses
aim to obfuscate traces by randomizing traces. Such defenses—that
only use padding—become less effective if the adversary can train
on significant numbers of defended traces [44, 55].

2.3 Video Fingerprinting
Video Fingerprinting (VF) analyzes encrypted traffic between a
client and a video server to identify the video being streamed. Mod-
ern video streaming typically uses the DASH standard [16], in
which videos are encoded at multiple quality levels and split into
fixed-length segments (a few seconds each), served over HTTP(S).
Streaming begins with a request for a Media Presentation Descrip-
tion (MPD) file, which lists available qualities and URLs for each
segment. The client then fetches segments individually, initially
in quick succession, followed by steady-state streaming, where a

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

segment is requested roughly once per segment duration. Finally,
clients use an Adaptive Bitrate (ABR) algorithm to switch quality
levels mid-stream based on network conditions.

2.3.1 Attacks. Due to the periodic nature of video traffic, it is possi-
ble to achieve remarkable success against undefended traffic by sim-
ply comparing a video’s segment sizes, which are easily obtainable
through the manifest, to the observed sequence of segment sizes.
Thus, many attacks are based on heuristics and basic machine learn-
ing algorithms, such as Leaky Streams [61] andWalls Have Ears [25].
However, more recent attacks such as Beauty and the Burst [66]
have begun to employ deep learning, with similar input formats and
model structures to WF attacks. WF attacks are in fact effective out
of the box [26], and the state-of-the-art VF attacks, Video-Adapted
Deep Fingerprinting (vDF) and Video-Adapted Robust Fingerprint-
ing (vRF) [11], are adaptations of DF [69] and RF [67] with time
series of byte counts as input instead of cells/packets.

2.3.2 Defenses. Compared to WF, very little work has been done
on defenses against VF attacks. Existing approaches include adver-
sarial samples, differential privacy [80], and trace morphing based
on GAN-generated traffic traces [76]. Unfortunately, adversarial
samples are ineffective, and both differential privacy and trace mor-
phing have limitations, including significant overhead trade-offs,
unknown effects on user experience, and deployment challenges.

A recent study [26] tested adaptations of two WF defenses,
FRONT [21] (randomized padding) and RegulaTor [31] (strict traf-
fic patterns) on video traffic, finding that the former is entirely
ineffective and the latter degrades user experience significantly.
In response, the authors proposed Scrambler, a defense that adds
random padding to segment downloads, achieving great success
for all but a small subset of the tested videos. Due to Scrambler’s
efficacy, low impact on user experience when bandwidth is high,
and implementation in Maybenot [56], we use it as a benchmark.

2.4 Maybenot
Maybenot is a framework for traffic analysis defenses implemented
in Rust [56–58], based on the Tor Circuit Padding Framework [52,
53], WTF-PAD [37], and the notion of Adaptive Padding [68]. The
framework is designed to be integrated with a transport protocol,
such as TLS [62], Tor [17], or WireGuard [18], running on both
the client-side and at a (potentially intermediate, e.g., a relay in
Tor) server. It acts as a runtime for probabilistic state machines.
The integrator continuously reports events that describe network
activities to an instance of the framework. The framework, in turn,
runs the state machines in its instance and returns actions from the
machines. The possible actions are to schedule padding (a dummy
packet), block outgoing packets for a duration, or update an internal
timer to support more complex state machines.

An instance of Maybenot involves zero or more machines as
well as limits imposed on all machines. Limits enable or prevent
machines from scheduling actions. There are four kinds of limits,
applied in the following order: (1) Per-state limits restrict how many
actions may be scheduled on self-transitions to the same state in a
machine. (2) Per-machine absolute limits enable amachine to create a
total number of padding packets and duration of active blocking, by-
passing other limits below. (3) Per-machine fractional limits restrict

the fraction of packets that can be padding and the fraction of time
that outgoing traffic can be actively blocked. (4) Framework-wide
fractional limits are enforced across all machines, limiting global
padding fraction and blocking duration.

2.4.1 Maybenot machines. A machine consists of the two above-
mentioned per-machine limits and one or more states. A state con-
sists of a counter, an action, and transitions.

The counter can be used to implement more expressive machines
as counters are incremented, decremented, set, and reach zero,
triggering events that may lead to transitions. Actions are triggered
(scheduled, if limits allow) upon transition to the state. Possible
actions include scheduling a padding packet to be sent, scheduling
the blocking of outgoing traffic for a specific duration, and updating
timers. The timers, like counters, are designed to support more
expressive machines. Actions to pad or block, as well as the duration
to block for, are sampled for one of 11 parameterized distributions,
such as the uniform and Poisson distributions.

The transitions are a matrix specifying the probability of transi-
tioning to every state in the machine for every possible event in the
framework. There are 13 events in Maybenot, including events for
packets sent/received, distinguishing between with and without
padding, as well as events related to blocking, limits, and timers.

2.4.2 The Maybenot simulator. Enables rapid development of ma-
chines. Takes as input a (base) network trace, Maybenot machines
run at both the client and the server, and a specified delay between
the client and the server. The simulator then outputs a simulated
defended network trace. We forked and enhanced the network
model of the simulator to support, in addition to a delay between
the client and server, a simulated network bottleneck (symmetric)
in terms of packets-per-second (PPS) rate. Blocking actions—and
now sent traffic exceeding the bottleneck rate—leads to aggregate
delays if subsequent network traffic. The original Maybenot simu-
lator and our changes conservatively overestimate the aggregate
delays (not to underestimate defense overheads), similar to the sim-
ulation of Tamaraw [10] and observations in related work [33, 79].
Appendix A provides further details on our improvements.

3 EPHEMERAL DEFENSES
The intuition behind ephemeral defenses is summarized in four
parts marked in Figure 1. First, we generate candidate defenses
as random Maybenot machines derived from seeds (Section 3.1).
Ephemeral defenses are instantiated deterministically from these
seeds, enabling reproducible yet diverse defense instances across
traces and simulations. Second, we repeatedly search (shaded area)
for defenses that fulfill constraints in simulated environments (Sec-
tion 3.2). Third, to achieve the desired number of defenses, defenses
can be optionally combined with polynomial growth under con-
straints (Section 3.3). Finally, defenses are deployed with tunable
overhead-defense trade-offs (Section 3.4). We detail each step and
end with an example (Section 3.5).

3.1 Random Machines
Random machines use Maybenot machines as a domain-specific
language for traffic analysis defenses. In gist, it consists of random-
ized machine limits (see Section 2.4), one or more random states,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

defense search

stacked combinations

tunable deployment

limits

environment

constraints

defended traces

simulatornetwork model

traces

defense

load

delay

random machines

strongly connected

liveliness

seed

servers
clients

defenses

height

seed

combine
repeat derivation in parallel n times steps

points

1 2 3 4

Figure 1: Overview of the defense search process. (1) Random machines with strongly connected states based on packet-level
events (liveliness) are repeatedly derived (first dashed shaded area) from seeds and (2) evaluated as defenses in simulated
environments (second dashed shaded area) in terms of fulfilling constraints wrt. bandwidth load and additional runtime (delay).
(3) Found defenses can be used to create stacked combinations of new defenses (with polynomial growth) that are also subject
to constraints. (4) Defenses can be tuned when deployed for different trade-offs in terms of overhead and protection.

feature flags for turning on or off Maybenot features, and three ref-
erence points. The feature flags control whether blocking actions are
allowed (off for padding-only defenses) and whether “expressive”
features, such as counters and timers, are permitted. This paper
does not explore expressive features for random machines, using
only a subset of Maybenot features to limit the size of the search
space. Based on feature flags, each state will perform either a block
or pad action with parameters influenced by the reference points.

The count reference point is the upper bound for uniformly
random sampling of allowed padding packets and per-state limits.
Its default value is 100. Per-state limits have a 50% probability of
being set (as a probability distribution, see below). A budget of
allowed padding packets is always sampled if the feature flag is set.

The duration reference point 𝑝 determines the sampled dura-
tions for when to take actions (scheduled timeouts) and the duration
of blocking actions. The duration reference point is also an upper
bound on all sampled durations from distributions. The default
value is 100 ms. The maximum value is either 𝑝 (with 50% prob-
ability) or sampled uniformly random from [0, 𝑝] independently
for each distribution. Note that this value provides a maximum
duration for blocking outgoing traffic, with significant implications
for the effectiveness and efficiency of defenses. For the randomized
parameters of distributions, 𝑝 influences the ranges of their values
to steer the expected value of the distribution towards the reference
point (for applicable distributions); see Appendix B.

The timeout reference point determines the minimum timeout
value on all blocking and padding action timeouts – defaults to zero.
If set, this restricts the ability of machines to cause large bursts by
repeatedly padding without any intermediate time.

The final piece of each random state is its transitions. With 50%
probability per relevant event (e.g., ignoring timer/counter events
for non-expressive machines), add transitions to a uniformly ran-
dom subset of states with random probabilities adding up to 1.0.
This process is repeated until the machine’s state transitions form
a strongly connected graph of all states (using Kosaraju’s algorithm)
with liveness, i.e., form a strongly connected graph based only on
transitions on events for sending and receiving normal packets
with a minimum transition probability of 5%. Unlike padding or
blocking, which runtime limits may prevent, these events always
occur, preventing machines from getting stuck in a state.

3.2 Defense Search
By repeatedly deriving defenses from seeds (Section 3.2.1), we search
for defenses in simulated environments (Section 3.2.2) that fulfill
some specified load and delay constraints (Section 3.2.3).

3.2.1 Deriving Defenses. We define a defense as two lists of May-
benot machines: One list for the client and one for the server. May-
benot specifies a custom serialization format for machines based
on serde, compression, and base64 encoding [58]. For ephemeral
defenses, we adopt a more safety-focused approach, inspired by
ML-KEM [46], of using seeds. Given a configuration file for defense
search, a seed deterministically generates a defense. We do this by
using xoshiro256 [9], a deterministic PRNG. The execution time
can be bound, leading to verifiable defense derivation in the order
of milliseconds. For example, using hyperfine [54] to benchmark
our CLI tool to derive a defense and print its serialized machines
to stdout (including all parsing of the config file, base traces, etc.)
takes 43.6 ± 4.7 ms on a commodity laptop for one of our ephemeral
padding-only defenses used in Section 5.

3.2.2 Environments. The environment is used to simulate a defense
on network traces using the Maybenot simulator. We define an en-
vironment as a set of network traces, a finite number of simulation
steps, and a network model between client and server.

The network traces should represent the type of defense be-
ing searched for, e.g., WF traces could be from the BigEnough
dataset [44]. The number of traces can be relatively few compared
to typical datasets; around 10–30 traces suffice.

The simulation steps are primarily bound to deal with machines
that get “stuck” in action loops (e.g., repeatedly scheduling new
blocking on blocking beginning). At first glance, it might be com-
pelling to express the simulation in terms of the number of packets
at the client (as captured in typical datasets), but machines quickly
find a way to mess this up. Other reasons to control simulation
steps are to search for defenses that fulfill their constraints with
fewer actions and to search only for defenses that target the start
of traces (e.g., when defending handshakes for CF in Section 4).

The network model between client and server is part of the
extended Maybenot simulator, as described in Section 2.4 and Ap-
pendix A. It consists of an RTT and a PPS rate. The RTT between
the client and server affects the simulated network trace at the
server and the transmission time of padding packets. The extended

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

)

simulator also supports a PPS rate, specifying the maximum PPS
of a simulated network bottleneck between the client and server.
Packets over the PPS get additional simulated delay before being
received. If normal packets get delayed, this causes aggregate delay
throughout the simulated network trace.

3.2.3 Constraints. Constraints are expressed in terms of accept-
able ranges of load (additional bandwidth) and delay (additional
duration). Load is defined for both client and server (based on pack-
ets sent), while delay is the aggregate increase in duration, as both
client and server machines contribute to the total duration. These
constraints are computed as averages over all traces in the envi-
ronment. For each simulated trace, there are also early constraint
checks for a configurable minimum total number of normal packets
and that at least a hardcoded 20% of events from the simulator
relate to normal (non-padding) packets. These early checks filter
out a large number of machines that too aggressively pad traffic,
toggle blocking on and off, etc.

3.3 Stacked Combinations
With input of one or more defenses, create a list 𝐶 of all client
machines and a list 𝑆 of all server machines in those defenses.
Then, based on a provided maximum height 𝐻 ≥ 1, create new
defenses by randomly selecting between [1, 𝐻] random machines
for the client and server, independently. Check for constraints in an
environment just as in the defense search. If the machines are from
defenses fulfilling identical constraints, we observe that combined
defenses typically require significantly fewer attempts to fulfill
constraints compared to random machines. For example, for the
ephemeral padding-only defenses in Section 5, it took an average of
1.28 attempts (median 1) to create defenses fulfilling the constraints.

The total number of unique combinations is:

©­«
min(𝐶,𝐻)∑︁

𝑘=1

(
𝐶

𝑘

)ª®¬ × ©­«
min(𝑆,𝐻)∑︁

𝑘=1

(
𝑆

𝑘

)ª®¬ (1)

Assuming a fixed 𝐻 , the number of combinations grows polynomi-
ally 𝑂 (𝑁 2𝐻) for 𝑁 = 𝐶 = 𝑆 . For example, 𝐻 = 5 with 𝑁 = 1, 000
gives 6.88 × 1025 unique defenses and 𝐻 = 6 with 𝑁 = 10, 000 in
total 1.93 × 1042 unique defenses. The polynomial growth is an
advantage when deploying ephemeral defenses in settings where
defenses may be distributed by a central party, saving compute.

3.4 Tunable Deployment
The Maybenot framework provides framework-wide limits, per-
machine limits, and per-machine budgets for both padding packets
and blocking duration (Section 2.4). These limits are also used
during defense search—and we enforce that random machines have
liveness (Section 3.1)—so most defenses are inherently tunable.
Hitting limits only temporarily stops the defense. As soon as limits
permit, actions will continue to be scheduled. As such, defenses are
inherently tunable in deployment by adjusting limits, allowing for
overhead-protection trade-offs.

3.5 Example: Ephemeral Padding-Only
Defenses for Website Fingerprinting

Appendix C introduces the TOML configuration of our Rust CLI
and provides a detailed walkthrough of the configuration for our
ephemeral padding-only defenses for WF evaluated in Section 5. To
summarize and highlight key insights, the configuration defines the
number of defenses to search for, derivation settings for machine
and environment parameters, and defense constraints. It primarily
involves balancing search space exploration with computational
limits. For example, environments are sampled and explored for a
maximum number of attempts before being resampled, and con-
straints in terms of load and delay are either tightly or loosely
defined in ranges of acceptable fractions. The entire search is deter-
ministic from a seed; we use seed 0 for all ephemeral defenses as a
nothing-up-my-sleeve number throughout the paper.

4 PARAMETER TUNING EPHEMERAL
DEFENSES FOR CIRCUIT FINGERPRINTING

To demonstrate a straightforward approach to parameter tuning
ephemeral defenses, we search for CF defenses that are an essential
part of protecting access to onion services in Tor.

4.1 False Positives for Onions
We sketch a defense to create false positives for a passive network
adversary attempting to fingerprint onion-site traffic. The source of
false positives would be general circuits misclassified as rendezvous
circuits. In addition, such a defense would require that general cir-
cuits create dummy introduction and HSdir circuits. Because the
base rate of general circuits is higher than onion circuits, achiev-
ing a low false positive rate in a balanced experiment (as below)
would likely suffice. Therefore, the defense could be run with some
probability on general circuits (always on rendezvous circuits). We
emphasize that such tuning would be necessary, as the adoption
of Conflux [2] circuits introduces additional complexities, and that
the impact of the added latency of onion circuits (twice the circuit
length) also requires careful investigation.

4.2 Parameter Tuning
Syverson et al. [73] collected a large dataset from the live Tor
network to evaluate the fingerprintability of the Onion Location
feature of Tor Browser [74]. From their dataset, we create a CF
dataset of 10,000 samples each of general and rendezvous circuits.
We truncate each sample to the first 30 cells and confirm that RF and
DF still achieve perfect (99.9%) accuracy. To search for ephemeral
defenses, we randomly picked 7 general and 7 rendezvous traces
from the dataset for our environment.

In the context of ephemeral defenses, parameter tuning is updat-
ing the configuration file. All parameters are relevant, including
those for tunable deployment, which ultimately modify the ma-
chines’ budgets. The search space is practically infinite, especially
when considering the environment traces. Here, we describe a semi-
automated basic method for parameter tuning. Much can probably
be improved in future work.

The tuning method operates in phases, with each phase executed
iteratively. Each phase begins with a starting configuration and

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

then iteratively randomly changes each parameter in the config-
uration with a small probability until it finds a new (previously
unevaluated) one. Each new configuration searches for defenses
up to a maximum number of defenses or until a maximum run-
time has expired. The defenses are then simulated on a dataset and
evaluated using DF, RF, and overhead calculations. This process is
automated and deterministically performed from a seed. It repeats
until stopped manually. Then, all results are evaluated manually,
and a new starting configuration is created for the next phase.

The parameter tuning of CF began with a liberal configuration
file (Appendix D), selecting 4–14 random traces from the dataset
and allowing client and server loads between 0.5 and 10.0, as well as
delays between 0.5 and 5.0. We searched for up to 1,000 defenses for
up to 15 minutes. When simulating defenses, machine and frame-
work budgets are scaled based on set values and tunable defense
limits. In this case, we simulate scaled limits of 1.0, 0.75, and 0.5.
This results in a trade-off line with three data points represent-
ing the trade-off between overhead and accuracy reduction for DF
and RF. We never modify the simulation parameters as part of the
tuning process to ensure ease of comparison between phases.

Parameter tuning was conducted over 11 phases, spanning six
days, and evaluated a total of 356 configurations. In brief, after start-
ing a phase, review the results in the evening before bed and initiate
a new phase overnight. Then, in the morning, repeat the process.
Figure 2 shows the trade-offs in accuracy and overheads between
the start and end configurations. Appendix D contains the complete
git diff between configurations. The tuning, for constraints, favors
server-side padding over client padding, but both with significantly
increased minimums over the starting configuration and reduced
required delay. Changed to computing limits only on actions be-
tween the first and last packet in the trace. For short traces such as
handshakes, this makes total sense (no tail to consider). Increased
granularity by setting a duration reference point with a wide range
of values and significantly increased simulation steps, allowing for
defenses that take many small actions to pass through constraints.
Searched longer by greatly increasing (17×) the maximum attempts
before sampling a new environment and narrowing the number of
traces to 7–11. Likely, this leads to more diverse defenses.

Using the final configuration, we searched for 1,000 defenses and
used those as a basis to evaluate combinations with heights 1–10.
We found no notable difference between heights 2–10, so we picked
height 2. We also observed no gains in limits above 0.75. Finally, we
selected eight limits (for spacing out trade-off lines) and evaluated
them using ten-fold cross-validation, producing Figure 3.

Figure 3 shows the accuracy of DF and RF for different overhead
costs. Note that this is a binary classification problem with balanced
classes, so 50% accuracy serves as the baseline (i.e., guessing). In
terms of overhead, it is the sum of delay and bandwidth. The delay
is at most 85% increased duration. At overhead 10 and below, delay
represents less than 3 seconds of blocking (average undefended
duration 18.2 seconds); the rest is padding. Recall that all traces in
the undefended dataset are capped at 30 cells. This means that a 10×
overhead is 300 cells (150 KiB). At 90% accuracy—representing a
non-negligible false positive rate—the defense increases the average
handshake from 15 KiB to 80 KiB and delays it by an additional
0.9 seconds. Whether this is sufficient or even practical is arguable.
On the one hand, circuits are usually established preemptively in

8 10 12 14 16 18 20
Overhead (bandwidth+delay)

0.7

0.8

0.9

Ac
cu

ra
cy

RF start
RF end
DF start
DF end

Figure 2: Trade-offs comparison between start and end con-
figurations for the Circuit Fingerprinting tuning.

0 5 10 15 20 25
Overhead (bandwidth + delay)

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

RF
DF

Figure 3: An ephemeral Circuit Fingerprinting defense with
tunable protection-overhead (0.5 accuracy baseline).

Tor before being used, so the bandwidth and delay may not impact
the user experience. On the other hand, bandwidth is a precious
resource in the Tor network. It might be worthwhile to optimize
defenses for using delay over padding. We leave this as future work.

Takeaway: Using a straightforward semi-automated tuning
process, ephemeral defenses can provide tunable defense, e.g.,
against Circuit Fingerprinting attacks.

5 WEBSITE FINGERPRINTING
ForWF, we implement and tune seven defenses inMaybenot for two
network models (Section 5.1), evaluate the defenses using five state-
of-the-art WF attacks (Section 5.2), improve the evaluation using
infinite training (Section 5.3), investigate how well trained attacks
generalize across defenses (Section 5.4), and how well parameter-
tuned defenses (Section 5.5) generalize across datasets.

5.1 Defenses and Parameter Tuning
For the sake of accurate comparison, we implement selected related-
work WF defenses in Maybenot. Some defenses are more or less
suitable as state machines, limiting our selection. We stress that our
implementations may have shortcomings, that related work was
not necessarily designed to operate in the settings provided by our
updated Maybenot simulator (e.g., where a network bottleneck may
be present), and that there is ultimately no substitute for real-world
deployment and experimentation.

As representative padding-only defenses we selected Break-
Pad [32], FRONT [21], and Interspace [55]. FRONT, together with
Interspace, were evaluated as on a Pareto front among practical
padding-only defenses studied by Mathews et al. [44]. Break-Pad
and Interspace target the Tor Circuit Fingerprinting framework [53]

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

)

and are, therefore, directly portable to Maybenot. For FRONT, we
use the implementation from Maybenot [56].

As representative fixed-rate defenses, we implemented versions
of RegulaTor [31] and Tamaraw [10]. Tamaraw is implemented
with a soft stop condition after a tunable window (in seconds)
of no normal packets sent, as done by Gong et al. for real-world
implementations of WF defenses [23]. The soft stop condition is
motivated by the practical challenge of a network-layer defense
implementation to determine the actual end of application-layer
data. Otherwise, Tamaraw is straightforward to implement as a
state machine. RegulaTor, on the other hand, is far from suitable
as Maybenot state machines due to the need for per-packet timers,
among other issues. We picked RegulaTor in part due to its excellent
performance and in part to demonstrate the limitations ofMaybenot.
We spent considerable time developing and refining a practical
implementation, but there is likely more that can be done.

We parameter-tuned all implementations for the BigEnough [44]
standard dataset, with and without a simulated network bottleneck.
Details are provided in Appendix E, including the final parameters
and additional information on the implementations. Parameters
were generally selected to minimize overheads (while maintain-
ing some defense, in the case of FRONT) or to match overheads
from related work. We weighed delay overhead twice as much as
bandwidth overhead. For FRONT, Interspace, and ephemeral de-
fenses, we created new instances of these defenses for each trace.
The ephemeral defenses use stacked combinations of height 2. Un-
less otherwise stated, all results are from five-fold cross-validation,
where we parameter-tuned on the first fold. Tuning and evaluation
were done independently by different authors.

5.2 Evaluation and Network Bottleneck
We simulate defenses on the BigEnough (standard Tor Browser se-
curity level) dataset in a closed world setting [44] twice: Once with
infinite simulated bandwidth and once with a network bottleneck
based on each trace’s maximum observed PPS in either direction
(see Appendix A). We evaluate defenses in terms of overhead and ac-
curacy. The overhead is in terms of additional bandwidth and delay.
Accuracy comes from five attacks (see Section 2.2.1): Deep Finger-
printing (DF) [69], Robust Fingerprinting (RF) [67], Laserbeak [43],
Laserbeak without attention (Laserbeak−), and DF-multi. Attacks
use their respective default hyperparameters, except for their input
lengths being increased to 10,000 to better capture the majority of
defended traffic (as in related work [43]), unless otherwise stated.
We present the results in Table 1, where ▽ indicates a simulated
bottleneck. Results are split by padding-only and blocking defenses.

When it comes to the simulated network bottleneck, our results
confirm that randomized padding-only defenses also add delay by
causing congestion [79]. Note that we re-tuned the parameters for
all defenses in their bottleneck versions. Break-Pad and FRONT,
due to their bursty padding at the beginning of network traces,
struggle in particular. The same is true for RegulaTor, which proved
challenging to tune, as balancing the send rate caused delays due to
being either too slow, thereby delaying traffic, or too high, which
hit the simulated bottleneck (see Appendix E). Interspace induced
the least additional delay due to the bottleneck, which is notable
since it has no parameters to tune. We stress that our simulator

model might be too conservative and that most defenses in the
literature were not intentionally (or unintentionally) designed with
a network bottleneck between client and server in mind. Real-world
implementations and experiments of these defenses often take the
form of Pluggable Transports (PTs) [23, 31] in Tor, where the net-
work bottleneck in experiments is not between the PT endpoints
but is highly likely to be inside the Tor network.

Takeaway: Defenses should consider network bottlenecks in
their design and evaluation (simulated and real-world experi-
ments) [4, 13, 33–35]; padding-only defenses cause delay [79].

There is a stark difference between padding-only and block-
ing defenses; attacks are highly effective against all padding-only
defenses, with ephemeral defenses offering some protection. Laser-
beak performs exceptionally well in terms of attacks, with slight
differences compared to Laserbeak− . This is in line with Mathews
et al.’s [43] findings that the added value of attention is small at best.
Blocking defenses offer significantly better protection against all
attacks, albeit with higher delays. That defenses need to cause some
overheads in terms of both bandwidth and delay to be effective is
expected [14, 15]. We observe a high deviation in delay overhead for
the ephemeral defenses in the bottleneck model, likely due to the
combination of randomly selecting a defense per trace and varying
actual bottlenecks for each trace. In contrast, the tuning process
focuses on average overheads.

Takeaway: Ephemeral defenses are competitive padding-only
and blocking defenses compared to state-of-the-art.

5.3 Data Augmentation and Infinite Training
Data augmentation and longer training times enhance attacks, es-
pecially against randomized padding-only defenses [43, 44, 55, 64].
Ephemeral defenses can create unique defenses for each simulated
trace in datasets, similar to how randomized defenses like FRONT
and Interspace sample parameters per instantiation. Because of
this, we implement infinite training for all attacks. When a trace is
pulled in the training loop for simulation, a new defense instance
is assigned to it (or, in the case of static defenses, the same de-
fense: This mirrors augmentation in earlier work where the same
defense is simulated multiple times per trace). No epoch limit is
set; the number of times traces are simulated with different (sam-
pled) defenses is not limited. We let the training loop continue until
no improvement in the validation set has been observed for 32
epochs (the termination patience). A minor modification in learn-
ing rate scheduling is necessary; we use the plateau learning rate
scheduler [20] for all attacks. Specifically, when there has been no
improvement in training set loss for eight epochs, the learning rate
is reduced by a factor of 0.8. Otherwise, the default setting of each
attack is preserved. Table 2 shows the result from infinite training
for the same setting as Table 1. The minor differences in overheads
between tables are due to measuring overheads in the final test set,
just like attack accuracies. The training time for different attacks
for Table 2 is shown in Appendix F. In total, it took 27 days of
wall-clock time using a mix of 4070 Ti and L40S GPUs. Laserbeak
and Laserbeak−are only two-fold cross-validated for this reason.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: For seven implemented defenses [10, 21, 31, 32, 55] in the Maybenot framework [56], bandwidth and delay overheads,
and attack accuracies from five attacks [43, 67, 69] on the BigEnough standard dataset in a closed world [44]. Results from
five-fold cross-validation. Attacks use a 10,000 input length. The highest average accuracy per defense is highlighted in bold.
▽ indicates a simulated network bottleneck computed for each undefended network trace; otherwise, infinite bandwidth.

BigEnough Accuracy % Overhead %
DF DF-multi Laserbeak Laserbeak− RF Bandwidth Delay

Undefended 89.0±0.8 93.5±0.4 96.4±0.3 96.2±0.2 90.1±0.8 0.0±0.0 0.0±0.0

Pa
dd

in
g-
on

ly

Break-Pad▽ 65.6±0.8 74.7±1.7 88.1±0.8 88.2±0.7 71.7±1.1 75.3±0.4 332.6±30.1
Break-Pad 66.6±0.8 84.4±1.4 89.8±0.7 90.3±0.6 77.9±1.2 75.3±0.4 0.0±0.0
Ephemeral Pad▽ 38.2±1.0 62.0±2.3 74.3±1.3 73.2±1.2 44.1±0.9 64.3±0.4 43.9±7.1
Ephemeral Pad 39.7±0.7 62.3±0.5 75.2±0.9 74.2±0.9 46.6±1.1 58.7±0.5 0.0±0.0
FRONT▽ 79.7±1.3 83.9±0.7 90.8±0.8 90.7±0.5 88.7±1.1 18.2±0.3 111.2±15.0
FRONT 59.2±0.9 76.2±1.0 87.7±1.1 90.0±0.5 90.8±0.9 72.7±1.3 0.0±0.0
Interspace▽ 55.5±2.1 81.4±0.5 87.3±1.1 87.0±1.0 68.6±1.0 56.3±0.6 17.9±8.5
Interspace 55.8±1.2 83.6±0.4 88.3±0.7 88.2±0.5 69.7±0.6 56.3±0.6 0.0±0.0

Bl
oc
ki
ng

Ephemeral Block▽ 14.0±0.6 27.9±1.4 33.2±1.6 34.7±2.1 17.9±0.7 78.8±0.9 123.7±38.2
Ephemeral Block 10.2±0.2 21.8±0.9 25.2±1.9 26.0±1.1 14.7±1.0 97.5±1.1 68.4±0.7
RegulaTor▽ 40.5±0.8 47.3±0.7 51.7±0.9 54.6±0.7 50.1±1.4 38.6±0.2 133.4±5.2
RegulaTor 34.3±1.1 44.6±0.7 47.4±1.5 53.4±1.7 66.4±0.6 89.7±0.7 7.8±0.2
Tamaraw▽ 29.0±0.2 33.5±2.1 34.9±0.9 36.8±0.6 28.5±1.6 127.9±2.8 146.9±11.6
Tamaraw 25.2±0.4 32.0±0.4 30.7±0.7 32.5±1.0 31.1±0.8 129.3±2.8 73.4±0.8

Table 2: A repeat of Table 1, but with infinite training time for the attacks until their validation accuracy stops improving.

BigEnough Accuracy % Overhead %
DF DF-multi Laserbeak Laserbeak− RF Bandwidth Delay

Undefended 92.7±0.3 95.8±0.7 96.5±0.5 97.1±0.1 94.7±0.6 0.0±0.0 0.0±0.0

Pa
dd

in
g-
on

ly

Break-Pad▽ 90.6±0.4 93.7±1.9 96.5±0.1 97.6±0.3 85.0±0.8 75.3±0.4 332.6±30.1
Break-Pad 90.6±0.3 97.1±0.1 97.3±0.3 97.7±0.2 86.8±0.6 75.3±0.4 0.0±0.0
Ephemeral Pad▽ 72.3±1.3 86.2±3.7 92.8±0.2 91.1±1.1 66.2±0.7 64.3±0.4 43.9±7.1
Ephemeral Pad 71.1±0.7 90.9±0.7 93.5±0.2 92.4±0.8 67.0±0.7 58.7±0.6 0.0±0.0
FRONT▽ 94.3±0.5 96.2±0.4 96.9±0.6 96.2±0.3 93.5±0.8 18.2±0.3 111.2±15.0
FRONT 91.8±0.8 95.9±0.3 96.2±0.4 96.3±0.4 94.9±0.9 72.5±1.0 0.0±0.0
Interspace▽ 85.3±0.4 95.1±0.4 94.8±1.2 95.9±0.4 81.4±0.7 56.3±0.6 17.9±8.5
Interspace 85.7±0.6 95.8±0.4 95.9±0.4 96.4±0.4 81.7±0.9 56.7±0.6 0.0±0.0

Bl
oc
ki
ng

Ephemeral Block▽ 37.8±1.0 52.1±5.7 76.1±2.0 62.1±3.3 32.2±2.5 78.8±0.9 123.7±38.2
Ephemeral Block 29.2±1.0 69.6±1.7 71.8±0.8 78.3±0.2 24.3±1.5 97.5±1.1 68.4±0.7
RegulaTor▽ 68.8±0.5 76.9±0.7 69.8±2.9 78.1±0.1 63.5±0.5 38.6±0.2 133.4±5.2
RegulaTor 68.1±0.6 74.7±0.4 73.5±1.1 77.6±1.1 77.7±0.4 89.7±0.7 7.8±0.2
Tamaraw▽ 41.4±0.6 45.7±0.6 45.1±1.6 50.8±0.2 40.5±0.5 127.9±2.8 146.9±11.6
Tamaraw 35.6±0.5 42.9±0.7 39.0±0.5 44.8±0.2 39.5±0.9 129.3±2.8 73.4±0.8

Starting with padding-only defenses, only ephemeral defenses
show a slight accuracy reduction of 3–4% compared to undefended
against Laserbeak. In the same way that DF bypasses the padding-
only defense WTF-PAD [37, 69], we see that Laserbeak does the
same for Break-Pad, FRONT, Interspace, and ephemeral defenses (to
a slightly lesser degree) given enough training time and data. Akin
to the closely related Anonymity Trilemma [14, 15], defense against
WF attacks seemingly requires some degree of explicit bandwidth

and delay overheads. It is an open question if effective and efficient
padding-only defenses are possible in the setting.

Takeaway: Given sufficient training time and data in a sim-
ulated closed-world setting, Laserbeak’s effectiveness against
padding-only defenses is the same as for undefended datasets.

Blocking defenses still provide protection under infinite training.
Tamaraw sees the smallest increase in accuracy between the tables.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

)

As a constant-rate defense fit (parameter tuned) to the underlying
dataset to minimize overheads, all information leaked is in the tail
from the soft stop condition. Despite that we see 45–51% accuracy,
indicating that the parameter choice for the soft stop condition is es-
sential. Regulator and ephemeral blocking defenses are comparable
in terms of accuracy, with RegulaTor having a lower overall over-
head. Laserbeak, compared to other attacks, is especially effective
against ephemeral blocking defenses, indicating that the Laserbeak
architecture is a key strength in this regard, particularly the atten-
tion layers. We know that it is not the feature representation since
DF-multi does notably worse. For RegulaTor, on the other hand,
all attacks are within 15%. Figure 4 shows that ephemeral block-
ing defenses (no bottleneck) can be tuned, by altering deployment
parameters, to trade overhead for defense against infinite trained
Laserbeak− (the highest accuracy attack for the defense in Table 2).

Takeaway: Blocking-based defenses remain effective, albeit to
a lesser extent, in closed-world simulated evaluations with infi-
nite training. Laserbeak’s architecture is particularly effective
against ephemeral blocking defenses.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Overhead (bandwidth + delay)

0.6

0.8

1.0

Ac
cu

ra
cy

Laserbeak

Figure 4: Ephemeral blocking (infinite network) offers tun-
able defense against Laserbeak− with infinite training.

5.4 Generalizability of Trained Attacks
Tables 1 and 2 involved training and testing a large number of
attacks. The training and testing took place on the same defenses,
i.e., we trained the attack on data from the same defense as we later
tested on. Here, we create attack/defense heatmaps, where we test
each trained attack on every defense. We test both the standard 30
epochs trained and infinitely trained attacks.

Figure 5 shows the results for Laserbeak, with 30 epochs trained
on the left and infinite training to the right. There is a stark impact
on generalizability due to infinite training. For infinite training,
the models trained on ephemeral defenses generalize particularly
well, especially on ephemeral blocking defenses. This is probably
due to the diversity of defenses observed during training. Tama-
raw is the only defense where the models completely fail—likely
because Tamaraw is the only constant-rate defense—a widely dif-
ferent defense strategy. The second-worst defense is RegulaTor,
which uses heavy regularization (related to constant-rate defenses),
further confirming the observation. The resulting heatmaps for
Laserbeak− , DF-multi, RF, and DF are in Appendix G. They show a
similar trend, albeit at lower accuracies.

Takeaway: Attacks trained infinitely on ephemeral defenses
show improved generalizability for randomized defenses, likely
due to the greater diversity in ephemeral defenses.

5.5 The Gong-Surakav Dataset
Parameter tuning of defenses for BigEnough was an elaborate task
(Appendix E). Without re-tuning, we investigate how well the pa-
rameter tuning transfers to the closely related Gong-Surakav [22]
undefended dataset. Table 3 presents the results, which are ob-
tained by performing the same evaluation as earlier on BigEnough
(Table 1) but using the Gong-Surakav dataset instead.

We start with overheads. The bottleneck network model is much
less impactful across the board in terms of delay, with the most dra-
matic decrease for Break-Bad (332.6±30.1%→ 18.9±10.4%), FRONT
(109.7±12.8%→ 3.0±4.0%) and RegulaTor (133.4±5.2%→ 32.7±8.4%).
For the infinite network model, Tamaraw sees a significant in-
crease (73.4±0.8%→ 125.8±1.3%), as do ephemeral blocking defenses
(68.1±0.8%→ 90.2±1.2%) to a lesser extent. For bandwidth, overhead
is down for every defense, especially for padding-only defenses.

In terms of attack accuracy, results are more similar to the infinite
training (Table 2) than the default attack parameters (Table 1). This
can likely be explained by comparing the two dataset structures:
BigEnough contains 95 classes with 20 samples each of 10 subpages
of each website/class (samples of subpages split randomly), while
the Gong-Surakav dataset contains 100 classes with 100 samples
each of the frontpage of each website. Gong-Surakav represents a
much easier classification task, both with more samples per web-
page and with only 100 webpages compared to 950 webpages (over
95 classes) in BigEnough. For padding-only defenses, none of the
defenses provide any significant protection, with a slight edge to
padding-only ephemeral defenses.

For blocking defenses, on the one hand, ephemeral blocking
and Tamaraw behave similarly to the infinite training case. Regula-
Tor, on the other hand, offers protection similar to padding-only
defenses. The parameter tuning of RegulaTor involves fitting the
distribution of one or more incoming bursts of traffic constrained
by a limited budget; this is inherently dataset dependent. Tamaraw,
with the soft stop condition based on a time window of no real
traffic, becomes more robust as a defense. Ephemeral defenses are
more general by virtue of consisting of many different defenses
that fit any dataset to some extent. This is important for practical,
real-world defenses, where the distribution of traffic is not well
known in advance (e.g., defenses for CF deal with amore predictable
distribution than WF, with VF falling somewhere in between).

Takeaway: Defenses with parameters tightly coupled to the
underlying distribution of traffic may deal poorly with out-of-
distribution traffic, analogous to how WF attacks may struggle
in the open-world instead of a closed-world setting.

6 VIDEO FINGERPRINTING
As a benchmark defense for VF, we use Scrambler [26], a state-
of-the-art defense implemented in Maybenot designed explicitly
for video traffic. Scrambler assumes reasonably high bandwidth,

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 5: Accuracy on the BigEnough standard dataset [44] in a closed world for Laserbeak [43] trained on the defense given in
row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

Table 3: A repeat of Table 1 with the same defense and attack parameters, but simulated the Gong-Surakav dataset [22].

Gong-Surakav Accuracy % Overhead %
DF DF-multi Laserbeak Laserbeak− RF Bandwidth Delay

Undefended 96.1±0.4 97.5±0.3 97.6±0.4 97.9±0.5 95.3±0.7 0.0±0.0 0.0±0.0

Pa
dd

in
g-
on

ly

Break-Pad▽ 83.7±0.5 92.4±0.6 94.0±0.7 94.4±0.4 90.8±0.4 46.2±0.2 18.9±10.4
Break-Pad 84.1±0.8 93.3±0.4 94.7±0.8 95.1±0.4 92.0±0.6 46.2±0.3 0.0±0.0
Ephemeral Pad▽ 64.8±1.6 86.9±1.1 90.5±0.5 89.9±0.6 85.0±1.3 53.7±0.4 2.1±2.9
Ephemeral Pad 54.9±3.2 80.0±1.1 87.9±1.4 86.8±0.8 79.9±1.1 52.7±1.1 0.0±0.0
FRONT▽ 92.2±0.6 95.3±0.4 95.5±0.6 96.2±0.6 95.7±0.7 10.8±0.2 3.0±4.0
FRONT 71.5±2.7 86.0±0.7 90.2±0.9 93.0±0.9 95.0±0.7 43.3±0.7 0.0±0.0
Interspace▽ 68.8±1.2 91.3±0.4 93.7±0.6 93.7±0.6 85.8±0.7 52.2±0.4 0.6±0.1
Interspace 67.9±1.7 91.4±0.7 94.0±0.4 93.9±0.5 86.2±0.4 52.2±0.4 0.0±0.0

Bl
oc
ki
ng

Ephemeral Block▽ 23.8±1.7 56.3±1.9 67.8±1.2 65.6±1.7 51.6±1.3 68.5±1.1 73.4±5.6
Ephemeral Block 17.9±0.4 46.4±1.5 55.5±0.6 56.2±0.9 44.4±1.0 81.8±1.5 90.2±1.2
RegulaTor▽ 83.7±0.6 90.6±0.6 92.0±0.9 92.8±0.7 92.2±0.8 22.8±0.2 32.7±8.4
RegulaTor 70.1±1.8 82.4±1.5 87.7±0.4 90.7±0.7 94.0±1.1 54.9±0.4 9.2±0.0
Tamaraw▽ 34.3±0.9 42.4±1.2 39.9±0.9 42.1±0.5 37.0±4.2 115.3±1.4 144.7±15.9
Tamaraw 29.5±0.8 38.2±0.9 32.8±1.1 34.7±0.9 32.5±3.8 121.7±1.5 125.8±1.3

under which overlapping segment downloads are rare. It detects
a segment download via a normal packet event and sends at a
fixed rate (every 𝛿 ms) until 𝑁 packets have been sent, after which
padding is sent until several packets sampled uniformly from the
range [𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥] can be sent with no intervening data packets,
as a heuristic to detect the end of a segment download.

To evaluate Scrambler and our ephemeral defenses, we utilize
the LongEnough dataset [26], which was collected and used to
evaluate Scrambler. LongEnough consists of 100 movies streamed

with 100 Mbps constant bandwidth (default) and is also available
in an extended version with four variable bandwidth scales (bw1,
bw2, bw4, and bw8). In the latter case, a real-world LTE bandwidth
trace is randomized, scaled by the number in the dataset name, and
used to limit the bandwidth available for streaming during data
collection. We use the strongest parameters reported by Hasselquist
et al. after tuning Scrambler on the default LongEnough settings:
𝛿 = 120, 𝑁 = 1,500, 𝑃𝑚𝑖𝑛 = 400, 𝑃𝑚𝑎𝑥 = 1,000. In their evaluations,
this configuration results in 284% bandwidth overhead.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

)

Weuse vDF and vRF [11] for attackswith ten-fold cross-validation.
For overheads, we simulate each defense ten times. The variable-
bandwidth datasets of LongEnough inherently capture network
fluctuations, and adding another (simulated) bottleneck may in-
troduce confounding interactions between simulated and dataset-
imposed constraints. Appendix A reports one related suspected
edge case. For ephemeral defenses, we use the ephemeral blocking
defenses for WF from Section 5 without tuning for VF.

Table 4 shows the results. We achieve nearly identical results to
Carlson et al. with vDF and vRF against undefended traffic [11]. Our
simulations of Scrambler align with Hasselquist et al.’s real-world
deployments [26] in terms of bandwidth overhead: They report
284.0% overhead, which is 21.1% higher than our results. The nearly
exponential increase in overhead we see with decreasing bandwidth
is expected, as the parameters we use are not tuned for variable
bandwidth, and all of Scrambler’s parameters are highly sensitive
to bandwidth conditions due to ABR algorithms.

Table 4: Video Fingerprinting on the LongEnough dataset
(default and four with variable bandwidth conditions) [26],
evaluated using vDF and vRF [11]. Scrambler is a SotA VF
defense [26], ephemeral is the ephemeral blocking defense
from Section 5 without any tuning.

LongEnough Accuracy % Overhead %
vDF vRF Bandwidth Delay

U
nd

ef
en
de
d Default 99.6±0.3 100.0±0.0 0.0% 0.0%

bw8 98.5±0.3 99.7±0.2 0.0% 0.0%
bw4 96.8±0.5 98.0±0.4 0.0% 0.0%
bw2 90.2±0.6 93.4±0.7 0.0% 0.0%
bw1 80.7±1.8 87.3±1.1 0.0% 0.0%

Sc
ra
m
bl
er

Default 1.0±0.0 1.0±0.0 262.9±0.0 64.8±0.0
bw8 1.0±0.0 1.0±0.0 459.4±0.0 57.1±0.0
bw4 1.0±0.0 1.0±0.0 810.9±0.1 43.5±0.0
bw2 0.7±0.3 0.9±0.3 1445.6±0.1 31.7±0.0
bw1 0.4±0.4 0.5±0.6 2364.2±0.2 19.9±0.0

Ep
he
m
er
al Default 19.3±1.3 24.6±1.1 134.0±0.8 74.6±0.7

bw8 10.5±1.2 23.6±0.9 154.6±0.8 75.2±0.7
bw4 7.1±1.0 17.8±1.6 164.6±0.8 78.7±0.8
bw2 3.1±0.6 7.8±1.3 175.3±0.8 81.8±9.2
bw1 2.1±0.4 3.3±0.4 187.1±0.7 81.3±11.3

Hasselquist et al. [26] also mention that 1.1% of playback is
spent waiting for a 10-minute video on average, corresponding to
roughly 1.1% delay overhead. The higher overhead we observe is
likely due to aggregated delays in the simulator not fully capturing
the dynamics of continuous traffic and potentially also a result of
the specific traces used during defense evaluation. This suggests
that ephemeral blocking defenses have lower delay overheads than
we report in real-world deployments.

Regarding protection, Scrambler renders vDF and vRF completely
ineffective; the highest accuracy is 1%, equivalent to random guess-
ing. This also aligns with Hasselquist et al.’s conclusion that Scram-
bler provides perfect protection. The efficacy of ephemeral blocking
defenses, on the other hand, depends on the bandwidth scale: vRF

is the most effective attack in all cases. It achieves 25% accuracy
against default LongEnough, with accuracy decreasing (as band-
width increases) to 3% against bw1. This represents a significant
weakening of the attacks at a much lower overhead than Scrambler.
Bandwidth overhead increases from 134% for default to 187% for
bw1, while delay overhead remains relatively stable from 75% to
82%. Thus, ephemeral blocking defenses represent a practical option
for strong protection without Scrambler’s bandwidth overhead or
volatility in variable network conditions.

Takeaway: Ephemeral blocking defenses offer a practical trade-
off between accuracy and overhead in both good and variable
bandwidth conditions for VF, suggesting that they are viable in
situations with long-lasting, continuous traffic.

7 DISCUSSION
In the same way that Section 6 just demonstrated that ephemeral
blocking defenses tuned forWF are viable for VF, Figure 6 compares
the ephemeral blocking WF defense with the tuned ephemeral CF
defense from Section 4. We see that the WF ephemeral blocking
defense offers tunable protection against circuit, video, and web-
site fingerprinting attacks. In settings where the application-layer
traffic is unknown, ephemeral defenses shine. If the application-
layer traffic is known, highly optimized network-layer defenses
offer a better trade-off, e.g., Scrambler for VF, Tamaraw for WF, or
optimizing ephemeral defenses to particular settings such as CF.

0 5 10 15 20 25 30 35 40
Overhead (bandwidth + delay)

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

RF - CF
DF - CF

RF - WF
DF - WF

Figure 6: The ephemeral blockingWF defense from Section 5
without any tuning as a CF defense. Compared with the fi-
nally tuned ephemeral CF defense.

Takeaway: By not being tuned/overfitted to attack, dataset,
or network conditions, ephemeral defenses are multipurpose
network-layer defenses against fingerprinting.

One such settingwhere a network-layer technology carries differ-
ent kinds of application traffic is VPNs. In this paper, we have simu-
lated all defenses and attacks for the sake of comparing their relative
strengths and weaknesses. We can briefly report that ephemeral
defenses with Maybenot have been integrated with WireGuard [18]
and deployed in production at REDACTED VPN for about a year,
supporting several thousand (and growing) active daily connec-
tions. While there is much to improve and optimize—and absolute
tuning for deployment remains largely disconnected from relative
tuning for closed-world comparisons [13]—we believe that there is
no substitute for iteration and experience from deployment. The

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

defense strategy of ephemeral defenses and the basic methodology
of search presented in this paper are practical and effective. If any-
thing, the user experience is acceptable (as indicated by a growing
number of users), and the protection offered against fingerprinting
and other forms of traffic analysis (with the notable exception of
likely making censorship easier due to WireGuard modifications)
is greater than that of standalone WireGuard.

With ephemeral defenses comes the question of defense distri-
bution. In the VPN case, where there is inherent trust in the VPN
servers, we built an architecture where VPN clients dynamically
receive their defense and configuration (Maybenot machines and
framework limits) upon establishing a connection. VPN servers,
in turn, have a (large) database of ephemeral defenses that are
straightforward to update and can eventually be replaced with
truly unique defenses per connection as we iterate. In the case of
Tor, with distributed trust in relays, the seed-based derivation of
defenses (Section 3.2.1) enables verifiable defense derivation based
on a mutually agreed-upon configuration, e.g., as part of the Tor
consensus. The seed could incorporate the shared random value
from the consensus to ensure freshness. Having both the client and
relay be aware of the defenses of both parties allows them to reason
about received padding from the other party, making it harder to
use padding and blocking actions as a side channel [51].

8 RELATEDWORK
Interspace [55] was developed in part by evolving state machines
using a genetic algorithm within the Tor Circuit Padding Frame-
work [52, 53], which employed an associated simulator and DF
in its learning loop. Our semi-automated tuning (Section 4) simi-
larly uses a simulator, state machines, and DF. Unlike Interspace,
we do not perform manual changes of machines. The manual
changes introduced randomized parameters per instance of In-
terspace. FRONT [21] also uses randomized parameters per in-
stance, i.e., randomized padding budget and padding window. For
ephemeral defenses, every defense is potentially unique.

DeTorrent [30] by Holland et al. employs competing neural net-
works to generate and evaluate traffic analysis defenses, where the
defense utilizes an LSTM that, at time steps based on prior traffic,
determines how much padding to send. While resulting in essen-
tially unique padding defenses, the LSTM is not implementable
as state machines (as Holland et al. note). They also worked on
transferability using the BigEnough dataset (but not across datasets
for WF) and across traffic analysis domains. Similar to how we note
that ephemeral defenses translate well across datasets and domains,
they found that their WF defense was also effective at defending
against Flow Correlation attacks [40, 45, 48, 60, 68, 72, 81].

Another WF defense that results in largely unique defenses is
Surakav byGong et al. [22]. Surakav uses a GAN to generate realistic
traffic patterns and regulates traffic to match those patterns. Like
DeTorrent, Surakav is not implementable as state machines. With
its strict regularization approach, we observe that Surakav is highly
application- and network-dependent.

The Laserbeak [43] closed-world evaluation was also done on
BigEnough, with 10x data augmentation, and with similar attacks
and defenses, albeit our defenses are all implemented in Maybenot.
The results align well with our infinite training results, indicating

that padding-only defenses offer little to no protection. The main
difference is that our more practical implementations of RegulaTor
and Tamaraw showworse protectionwith about 20% higher average
accuracy, likely due to our implementations.

A number of works show that network congestion and (simpli-
fied) simulation can have a significant negative impact on both WF
defenses and attacks in practice [4, 13, 33–35, 79]. This is closely
related to the long-going discussion of the real-world practicality
of WF attacks [36, 50, 78]. Our results align with these observa-
tions in several ways. For one, closed-world defense comparisons
against state-of-the-art attacks, such as Laserbeak, are soon ren-
dered pointless due to near-perfect attack accuracies, at least for
padding-only defenses. Defenses need to induce both bandwidth
and delay [14, 15]. We also note significant differences for defenses
based on (simulated) network conditions and across datasets; ster-
ile lab tuning of defenses generalizes poorly. On the attack side, if
provided sufficient training time, we observe that attacks trained
on ephemeral blocking defenses generalize better across various
defenses and network conditions than if trained on other defenses.

9 CONCLUSION
Ephemeral defenses are multipurpose network-layer defenses that
are not tightly tuned to any particular fingerprinting attack, dataset,
or network conditions. The ephemeral defense strategy introduced
in this paper uses simple methods of defense search and semi-
automated tuning. There is room for improvement. In general,
dynamic selection, generation, or assignment (depending on the
setting) of ephemeral defenses opens up for improved customization
to particular network conditions—reducing the negative impact on
the user experience of defenses—and may deprive attackers of the
capability to train on the exact defense used by users, i.e., shifting
Kerckhoffs’s principle for fingerprinting defenses to treat defenses
like keys instead of public knowledge.

ACKNOWLEDGMENTS AND ETHICS
The authors used the generative AI-based tools Grammarly and
GitHub Copilot (no explicit prompting, continuous feedback from
the LATEX IDE) to revise the text, enhance the flow, and correct any
typos, grammatical errors, and awkward phrasing. ChatGPT o3
assisted in creating our Python scripts for plotting figures.

All experiments in this paper were conducted by simulation
on datasets made available by other researchers [22, 26, 44, 73].
The deployed ephemeral defenses with REDACTED VPN are an opt-
in feature. There is no additional direct harm from our research;
we believe that openly advancing the state-of-the-art of practical
fingerprinting defenses is in the greater interest of society.

ARTIFACTS
To promote reproducibility, tooling to reproduce all CF, VF, and WF
experiment results will be released as research artifacts. The tooling
is deterministic, and we have documented the seeds for the results
in this paper to fulfill the “Artifact Reproduced” badge requirements
(by computationally rich artifact reviewers). The tooling serves as
the basis for two accompanying open-source Rust crates for creating
ephemeral fingerprinting defenses, which will be made available
on crates.io as open-source (MIT or Apache-2.0 dual-license).

12

crates.io

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

)

REFERENCES
[1] Kota Abe and Shigeki Goto. 2016. Fingerprinting attack on Tor anonymity using

deep learning. Proceedings of the Asia-Pacific Advanced Network (2016).
[2] Mashael AlSabah, Kevin Bauer, Tariq Elahi, and Ian Goldberg. 2013. The path

less travelled: Overcoming Tor’s bottlenecks with traffic splitting. In Privacy
Enhancing Technologies: 13th International Workshop, PETS 2006. Springer-Verlag,
LNCS 7981. https://doi.org/10.1007/978-3-642-39077-7_8

[3] Anonymized. 2025. Anonymized for submission.
[4] Alireza Bahramali, Ardavan Bozorgi, and Amir Houmansadr. 2023. Realistic

Website Fingerprinting By Augmenting Network Traces. In CCS.
[5] Ludovic Barman, Sandra Siby, Christopher A. Wood, Marwan Fayed, Nick Sulli-

van, and Carmela Troncoso. 2022. This is not the padding you are looking for!
On the ineffectiveness of QUIC PADDING against website fingerprinting. CoRR
(2022). https://doi.org/10.48550/arXiv.2203.07806

[6] Matthias Beckerle, Jonathan Magnusson, and Tobias Pulls. 2022. Splitting Hairs
and Network Traces: Improved Attacks Against Traffic Splitting as a Website
Fingerprinting Defense. In WPES.

[7] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2019. Var-CNN: A
Data-Efficient Website Fingerprinting Attack Based on Deep Learning. PETS
(2019).

[8] George Dean Bissias, Marc Liberatore, David D. Jensen, and Brian Neil Levine.
2005. Privacy Vulnerabilities in Encrypted HTTP Streams. In Privacy Enhancing
Technologies, 5th International Workshop, PET 2005, Cavtat, Croatia, May 30-June
1, 2005, Revised Selected Papers.

[9] David Blackman and Sebastiano Vigna. 2021. Scrambled linear pseudorandom
number generators. ACM Transactions on Mathematical Software (TOMS) 47, 4
(2021), 1–32.

[10] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.
A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In CCS.

[11] August Carlson, David Hasselquist, Ethan Witwer, Niklas Johansson, and Niklas
Carlsson. 2024. Understanding and Improving Video Fingerprinting Attack
Accuracy under Challenging Conditions. InWPES.

[12] Heyning Cheng and Ron Avnur. 1998. Traffic analysis of SSL encrypted web
browsing. Project paper, University of Berkeley (1998).

[13] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online Website
Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real
World. In USENIX Security.

[14] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2018.
Anonymity Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low La-
tency - Choose Two. In IEEE S&P.

[15] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate. 2020.
Comprehensive Anonymity Trilemma: User Coordination is not enough. PETS
(2020).

[16] DASH-Industry-Forum. 2024. dash.js. https://dashjs.org/.
[17] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security.
[18] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel..

In NDSS.
[19] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. 2015. Marionette: A

Programmable Network-Traffic Obfuscation System. In USENIX Security.
[20] PyTorch Foundation. 2025. ReduceLROnPlateau — PyTorch 2.7 documenta-

tion. https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html, accessed 2025-05-28.

[21] Jiajun Gong and Tao Wang. 2020. Zero-delay Lightweight Defenses against Web-
site Fingerprinting. In USENIX Security, Srdjan Capkun and Franziska Roesner
(Eds.).

[22] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2022. Surakav: Gen-
erating Realistic Traces for a Strong Website Fingerprinting Defense. In IEEE
SP.

[23] Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang. 2024. WFDefProxy:
Real World Implementation and Evaluation of Website Fingerprinting Defenses.
IEEE Trans. Inf. Forensics Secur. 19 (2024).

[24] David Goulet and Mike Perry. 2020. Overcoming Tor’s Bottlenecks with Traffic
Splitting. https://spec.torproject.org/proposals/329-traffic-splitting.html.

[25] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. 2018. Walls Have Ears:
Traffic-based Side-channel Attack in Video Streaming. In Proc. IEEE INFOCOM.

[26] David Hasselquist, Ethan Witwer, August Carlson, Niklas Johansson, and Niklas
Carlsson. 2024. Raising the Bar: Improved Fingerprinting Attacks and Defenses
for Video Streaming Traffic. PoPETs (2024).

[27] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In USENIX Security.

[28] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
fingerprinting: attacking popular privacy enhancing technologies with the multi-
nomial naïve-bayes classifier. In CCSW.

[29] Andrew Hintz. 2002. Fingerprinting Websites Using Traffic Analysis. In PETS.

[30] James K. Holland, Jason Carpenter, Se Eun Oh, and Nicholas Hopper. 2024.
DeTorrent: An Adversarial Padding-only Traffic Analysis Defense. PETS (2024).

[31] James K. Holland and Nicholas Hopper. 2022. RegulaTor: A Straightforward
Website Fingerprinting Defense. PETS (2022).

[32] Bin Huang and Yanhui Du. 2024. Break-Pad: effective padding machines for Tor
with break burst padding. Cybersecurity 7, 1 (2024), 28. https://cybersecurity.
springeropen.com/articles/10.1186/s42400-024-00222-y.

[33] Rob Jansen and Ryan Wails. 2023. Data-Explainable Website Fingerprinting with
Network Simulation. PETS (2023). See also https://explainwf-popets2023.github.
io.

[34] Rob Jansen, Ryan Wails, and Aaron Johnson. 2024. A Measurement of Genuine
Tor Traces for Realistic Website Fingerprinting. CoRR abs/2404.07892 (2024).
https://doi.org/10.48550/arXiv.2404.07892

[35] Rob Jansen, Ryan Wails, and Aaron Johnson. 2024. Repositioning Real-World
Website Fingerprinting on Tor. In WPES.

[36] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Díaz, and Rachel Greenstadt. 2014.
A Critical Evaluation of Website Fingerprinting Attacks. In CCS.

[37] Marc Juárez, Mohsen Imani, Mike Perry, Claudia Díaz, and Matthew Wright.
2016. Toward an Efficient Website Fingerprinting Defense. In ESORICS.

[38] George Kadianakis, Theodoros Polyzos, Mike Perry, and Kostas Chatzikoko-
lakis. 2022. Tor circuit fingerprinting defenses using adaptive padding.
arXiv:2103.03831 [cs.CR]

[39] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
2015. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden
Services. In USENIX Security.

[40] Brian Neil Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright. 2004.
Timing Attacks in Low-Latency Mix Systems (Extended Abstract). In Financial
Cryptography.

[41] Marc Liberatore and Brian Neil Levine. 2006. Inferring the source of encrypted
HTTP connections. In CCS.

[42] Akshaya Mani, T Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.
2018. Understanding tor usage with privacy-preserving measurement. In IMC.

[43] Nate Mathews, James K Holland, Nicholas Hopper, and Matthew Wright. 2024.
LASERBEAK: EvolvingWebsite Fingerprinting Attacks with Attention andMulti-
Channel Feature Representation. IEEE Transactions on Information Forensics and
Security (2024).

[44] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,
Nicholas Hopper, and Matthew Wright. 2022. SoK: A Critical Evaluation of
Efficient Website Fingerprinting Defenses. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 344–361.

[45] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In CCS.

[46] NIST. 2024. FIPS 203: Module-Lattice-Based Key-Encapsulation Mechanism
Standard. https://csrc.nist.gov/pubs/fips/203/final [Online; accessed 7-March-
2025].

[47] Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper. 2019. p1-FP: Extraction,
Classification, and Prediction of Website Fingerprints with Deep Learning. PETS
(2019).

[48] Se Eun Oh, Taiji Yang, Nate Mathews, James K. Holland, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. 2022. DeepCoFFEA: Improved
Flow Correlation Attacks on Tor via Metric Learning and Amplification. In IEEE
SP.

[49] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In NDSS.

[50] Mike Perry. 2013. A Critique of Website Traffic Fingerprinting At-
tacks, https://web.archive.org/web/20250119143043/https://blog.torproject.org/
critique-website-traffic-fingerprinting-attacks/.

[51] Mike Perry. accessed 2025-04-22. Proposal 344: Information Leak Hazards for
Tor Implementations. https://spec.torproject.org/proposals/344-protocol-info-
leaks.html.

[52] Mike Perry and George Kadianakis. accessed 2025-03-02. Circuit Padding Devel-
oper Documentation. https://gitweb.torproject.org/tor.git/tree/doc/HACKING/
CircuitPaddingDevelopment.md.

[53] Mike Perry and George Kadianakis. accessed 2025-03-02. Tor Padding Specifica-
tion. https://spec.torproject.org/padding-spec/index.html.

[54] David Peter and hyperfine contributors. 2025. hyperfine, A command-line bench-
marking tool. https://github.com/sharkdp/hyperfine, accessed 2025-04-09.

[55] Tobias Pulls. 2020. Towards Effective and Efficient Padding Machines for Tor.
CoRR abs/2011.13471 (2020). https://arxiv.org/abs/2011.13471

[56] Tobias Pulls and Ethan Witwer. 2023. Maybenot: A Framework for Traffic
Analysis Defenses. In WPES.

[57] Tobias Pulls and Ethan Witwer. 2024. Maybenot: A Framework for Traffic
Analysis Defenses. arXiv:2304.09510 [cs.CR] https://arxiv.org/abs/2304.09510

[58] Tobias Pulls and EthanWitwer. 2025. maybenot - crates.io: Rust Package Registry.
https://crates.io/crates/maybenot [Online; accessed 2-March-2025].

[59] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-
gadhara, and Matthew Wright. 2020. Tik-Tok: The Utility of Packet Timing in

13

https://doi.org/10.1007/978-3-642-39077-7_8
https://doi.org/10.48550/arXiv.2203.07806
https://dashjs.org/
https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://cybersecurity.springeropen.com/articles/10.1186/s42400-024-00222-y
https://cybersecurity.springeropen.com/articles/10.1186/s42400-024-00222-y
https://explainwf-popets2023.github.io
https://explainwf-popets2023.github.io
https://doi.org/10.48550/arXiv.2404.07892
https://arxiv.org/abs/2103.03831
https://csrc.nist.gov/pubs/fips/203/final
https://web.archive.org/web/20250119143043/https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks/
https://web.archive.org/web/20250119143043/https://blog.torproject.org/critique-website-traffic-fingerprinting-attacks/
https://spec.torproject.org/proposals/344-protocol-info-leaks.html
https://spec.torproject.org/proposals/344-protocol-info-leaks.html
https://gitweb.torproject.org/tor.git/tree/doc/HACKING/CircuitPaddingDevelopment.md
https://gitweb.torproject.org/tor.git/tree/doc/HACKING/CircuitPaddingDevelopment.md
https://spec.torproject.org/padding-spec/index.html
https://github.com/sharkdp/hyperfine
https://arxiv.org/abs/2011.13471
https://arxiv.org/abs/2304.09510
https://arxiv.org/abs/2304.09510
https://crates.io/crates/maybenot

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Website Fingerprinting Attacks. PETS (2020).
[60] Jean-François Raymond. 2000. Traffic Analysis: Protocols, Attacks, Design Issues,

and Open Problems. In Designing Privacy Enhancing Technologies, International
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA, USA,
July 25-26, 2000, Proceedings.

[61] Andrew Reed and Benjamin Klimkowski. 2016. Leaky streams: Identifying
variable bitrate DASH videos streamed over encrypted 802.11n connections. In
Proc. IEEE Consumer Communications & Networking Conference (CCNC).

[62] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446. https://doi.org/10.17487/RFC8446

[63] Vera Rimmer, Davy Preuveneers, Marc Juárez, Tom van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
NDSS.

[64] Vera Rimmer, Theodor Schnitzler, Tom van Goethem, Abel Rodríguez Romero,
Wouter Joosen, and Katharina Kohls. 2022. Trace Oddity: Methodologies for
Data-Driven Traffic Analysis on Tor. PoPETs (2022).

[65] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal, and Tadayoshi
Kohno. 2007. Devices That Tell on You: Privacy Trends in Consumer Ubiquitous
Computing. In USENIX Security.

[66] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:
Remote Identification of Encrypted Video Streams. In USENIX Security.

[67] Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu. 2023. Sub-
verting Website Fingerprinting Defenses with Robust Traffic Representation. In
USENIX Security.

[68] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing Analysis in Low-Latency
Mix Networks: Attacks and Defenses. In ESORICS.

[69] Payap Sirinam, Mohsen Imani, Marc Juarez, andMatthewWright. 2018. Deep Fin-
gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.
In CCS.

[70] Jean-Pierre Smith, Luca Dolfi, Prateek Mittal, and Adrian Perrig. 2022. QCSD:
A QUIC Client-Side Website-Fingerprinting Defence Framework. In USENIX
Security.

[71] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padman-
abhan, and Lili Qiu. 2002. Statistical Identification of Encrypted Web Browsing
Traffic. In IEEE S&P.

[72] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford, Mung
Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Privacy in Tor.
In USENIX Security.

[73] Paul Syverson, Rasmus Dahlberg, Tobias Pulls, and Rob Jansen. 2025. Onion-
Location Measurements and Fingerprinting. PoPETs (2025).

[74] Tor Project 2021. Onion-Location. https://community.torproject.org/onion-
services/advanced/onion-location/ accessed 2025-05-29.

[75] Tor Project accessed 2025-05-13. Tor specifications. https://spec.torproject.org.
[76] Alexander Vaskevich, Thilini Dahanayaka, Guillaume Jourjon, and Suranga

Seneviratne. 2021. Smaug: Streaming media augmentation using CGANs as a
defence against video fingerprinting. In Proc. IEEE NCA.

[77] Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. 2023. Proteus: Pro-
grammable Protocols for Censorship Circumvention. In Free and Open Commu-
nications on the Internet. https://www.petsymposium.org/foci/2023/foci-2023-
0013.pdf

[78] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website
Fingerprinting. PETS (2016).

[79] Ethan Witwer, James K. Holland, and Nicholas Hopper. 2022. Padding-only
Defenses Add Delay in Tor. InWPES.

[80] Xiaokuan Zhang, Jihun Hamm, Michael K Reiter, and Yinqian Zhang. 2019.
Statistical privacy for streaming traffic. In Proc. NDSS.

[81] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. 2004. On
Flow Correlation Attacks and Countermeasures in Mix Networks. In Privacy
Enhancing Technologies, 4th International Workshop, PET 2004, Toronto, Canada,
May 26-28, 2004, Revised Selected Papers.

A SIMULATING AND AGGREGATING DELAYS
IN THE MAYBENOT SIMULATOR

When parsing a base (undefended) trace for use in the Maybenot
simulator, the simulator takes as an argument a network model. The
network model consists of a round-trip time (RTT) and a packets-
per-second (PPS) rate. The RTT is the simulated RTT between the
client and server, while the PPS is the maximum number of packets
per second that can be sent over the network.

During the parsing of a trace, the simulator creates event queues
for both the client and the server. The client event queue consists
of the normal sent events in the base trace since this is the ground

truth for the simulator. The serve event queue, in turn, consists
of sent events for the server to match the recv events at the client
in the base trace. The timestamps in this queue are based on the
RTT, with the server sending packets RTT/2 before they arrive at
the client, matching the base trace.

When building the event queues, we updated the simulator to
also compute the maximum observed PPS in either direction of the
base trace. This per-trace PPS rate is then used by the simulator
in the bottleneck network model. We know, per definition, that
there is some bottleneck between client and destination and that
the packets in the base trace traversed this bottleneck. Here, we
now take the worst-case scenario of modeling this bottleneck as
being between the client and server. How common this scenario
is, depends on where Maybenot is used. For HTTPS, the bottle-
neck is, by definition, somewhere between the client and the server.
For VPNs, the bottleneck is likely between the client and the VPN
server because VPN servers and destinations typically have excel-
lent bandwidth. For Tor, the bottleneck is expected within the Tor
network itself, and therefore, it depends on which relay is running
defenses (e.g., guard, middle, or exit for general circuits).

There are two sources of aggregating delays during simulation
in the simulator: blocking actions and PPS above the bottleneck rate.
The PPS bottleneck can be disabled by setting a large PPS rate. This
is what we do in the “infinite” bandwidth models. The aggregated
delays will accumulate at the client and server, delaying all future
traffic. A key observation for when aggregate delay should come
into effect is that packets already in flight cannot depend on packets
not yet sent. This is similarly discussed in the Tamaraw paper [10]
in the context of enforcing causal ordering of packets and not
violating packet dependencies for simulation. Likewise, we take a
conservative approach to guarantee correctness but at the likely
cost of overestimating delay overheads. For example, the result of
aggregate delay due to blocking or exceeding the bottleneck PPS
at the client will come into effect at the client in 2 ∗ RTT and at
the server in 1.5 ∗ RTT, when assuming the same delay between
destination and server as between client and server.

When active blocking expires, the simulator considers the delta
between the time of the block expiry and when the tail of any
blocked queued burst of packets would have been sent without
blocking. The burst window is one millisecond. We consider the
tail of the burst, assuming that delaying prior packets would not
allow the receiving application to respond any faster until the tail
has arrived. In cases when the burst is large, the PPS bottleneck
may lead to further delays.

When the PPS bottleneck is exceeded, the simulator triggers
aggregate delays of 1/PPS for the last packet sent within a one-
millisecond window. On the one hand, the aggregate delay of 1/PPS
is excessive for lower PPS rates. On the other hand, by only trig-
gering aggregate delays once per window, we underestimate the
delay when a significant number of packets are sent (either due to
rapid padding or long-lived blocking).

There is likely much to be done to improve further the network-
ing side of the simulator, including resolving complex edge cases
involving interactions between aggregate delays and blocking ac-
tions. For example, when running ten-fold cross-validation for the
Video Fingerprinting results in Table 4, we observed that simulation
seed 2 resulted in a significant spike in total average delay with

14

https://doi.org/10.17487/RFC8446
https://community.torproject.org/onion-services/advanced/onion-location/
https://community.torproject.org/onion-services/advanced/onion-location/
https://spec.torproject.org
https://www.petsymposium.org/foci/2023/foci-2023-0013.pdf
https://www.petsymposium.org/foci/2023/foci-2023-0013.pdf

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

)

ephemeral blocking defenses. To investigate, we ran simulations
with seeds 0–99 (taking four days on an AMD EPYC 7713P 64-Core
Processor). For 95 of the seeds, the delay was below 100%. The
remaining five delays were 170%, 171%, 2855%, and 4919%, with
4919% from seed 2. Inspecting the resulting simulated traces, we
found several outliers where the 10-minute video was simulated to
take days to stream. We suspect this is due to a rare bug involving
cascading aggregate delays. Further refinement on accurate but fast
simulations is needed for ephemeral defenses.

B RANDOMMAYBENOT DISTRIBUTIONS
We distinguish between picking distributions for counts and dura-
tions. For counts, we consider the Uniform, Binomial, Geometric,
Pareto, Poisson, and Weibull distributions. For timeouts, the Uni-
form, Normal, SkewNormal, LogNormal, Pareto, Poisson, Weibull,
and Gamma distributions. Maybenot also supports the Beta distri-
bution, but we found no clear use for it.

Distribution parameters are selected uniformly at random in
relation to a reference point, specifically the count and duration
reference points for their respective distributions. For reference
point 𝑝 where ← denotes uniformly random sampling from an
inclusive range, we sample floats, except for trials in the Binomial
distribution. We often sample parameters starting from 0.001 in-
stead of 0.0 to prevent extreme cases that may slow down sampling
the distribution in practice (with the rand_distr crate1). While
much can probably be improved here, for the ten distributions used,
as a starting point, we selected to use:

Uniform (low, high) 𝑙 ← [0, 𝑝], ℎ ← [𝑙, 𝑝].
Binomial (trials, probability) 𝑡 ← [10,max(𝑝, 11)], 𝑝 ←

[0.001, 1.0]. We enforce 10 trials to get spread in values.
Geometric (probability) 𝑝 ← [0.001, 1.0].
Gamma (scale, shape) scale← [0.001, 𝑝], shape←

[0.001, 10.0]. A shape of 10 already leads to a Normal-like
distribution.

Pareto (scale, shape) scale← max([𝑝/100.0, 𝑝], 0.001),
shape← [0.001, 10.0]. The maximum shape 10 makes the
distribution less tail-heavy.

Poisson (lambda) 𝑙 ← [0, 𝑝]
Weibull (scale, shape) scale← [0.001, 𝑝], shape← [0.5, 5]. The

shape range captures a wide range of uses.
Normal (mean, stdev) 𝑚 ← [0, 𝑝], 𝑠 ← [0, 𝑝].
SkewNormal (location, scale, shape) location ← [0.5𝑝, 1.5𝑝],

scale ← [𝑝/100, 𝑝/10], shape ← [−5, 5]. The location is
centered around 𝑝 , the scale clustered around 𝑝 (recall that
𝑝 is often very large due toMaybenot operating in microsec-
onds), and the shape range allows the distribution to take
on asymmetric shapes.

LogNormal (mu, sigma) 𝑚𝑢 ← [0, 20.0], 𝑠𝑖𝑔𝑚𝑎 ← [0, 1]. The
range for 𝜇 leads to values from 0 to ≈ 4.85 × 108. A small
sigma leads to modest spread.

1https://crates.io/crates/rand_distr, accessed 2025-04-16.

C EXAMPLE: EPHEMERAL PADDING-ONLY
DEFENSES FOR WEBSITE FINGERPRINTING

To exemplify ephemeral defense search, we introduce the configura-
tion and provide more detail by walking through the configuration
for our ephemeral padding-only defenses for WF evaluated in Sec-
tion 5. The defense search process from Section 3 is implemented
in Rust (like Maybenot) and configured using TOML. The top table
is for the search itself:

1 [search]
2 n = 1_000
3 seed = 0

The search table specifies the number of defenses to find and a
seed for deterministic search. In this paper, we use seed 0 for all
ephemeral defenses as a nothing-up-my-sleeve number throughout.

For each defense to derive, we specify the number of machines
(at client and server) and the maximum number of attempts be-
fore sampling a new environment. The number of machines is a
range, [1, 1], sampled uniformly random (inclusive). Ranges are
used through the configurations. The start of the derive table:

1 [derive]
2 num_machines = [1,1]
3 max_attempts = 50

Deriving multiple machines per side is likely to result in only one
sound machine. It is mainly useful in conjunction with fixed (hard-
coded) machines (not shown here). The maximum attempts param-
eter is important. Typically, it is harder to find defenses in some
areas of the search space in the configuration. On the one hand,
setting a maximum number of attempts can then prevent the search
from getting stuck. On the other hand, too few attempts result in
defenses that only fulfill the constraints in the easier areas.

Next is the machine parameters:
1 [derive.machine]
2 num_states = [3,4]
3 duration_ref_point = [672_000, 950_000]
4 allow_blocking_client = false
5 allow_blocking_server = false
6 allow_expressive = false
7 allow_frac_limits = false
8 allow_fixed_budget = true

For each machine, we will sample uniformly randomly (inclusive)
the number of states. We find little value in more states in ma-
chines while increasing them greatly increases the search space.
One of the most important parameters is the duration reference
point, duration_ref_point, that controls all durations in the state
(Section 3.1). Here, we randomly select a point from 672 ms to 950
ms for each machine (Maybenot operates in microseconds). This
creates a large difference between machines. Finally, we turn off
blocking actions, expressive states, and machine (fractional) limits
while allowing a fixed padding budget. Next is the environment:

1 [derive.env]
2 traces = ["DeepFingerprinting", "GongSurakav"]
3 num_traces = [15, 16]
4 rtt_in_ms = [50, 500]
5 packets_per_sec = [10_000, 20_000]
6 sim_steps = [5_000, 5_000]

The list of string traces maps to hardcoded collections of traces (for
efficiency). In this case, the traces consist of 14 traces from Gong et
al.’s undefended Surakav dataset [22] and 14 traces from the DF [69]

15

https://crates.io/crates/rand_distr

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

dataset. Each trace is from a distinct class and selected only on the
basis of consisting of at least 1,000 cells. As the num_traces key
suggests, we found little value in additional traces in our experi-
mentation. As is, between 15–16 out of the 28 traces are selected at
random for each environment. We also experimented with using
traces from the BigEnough [44] dataset, but due to the intentionally
coarse-grained timestamps (10 ms resolution, to prevent attackers
from gaining an advantage), simulations resulted in defenses that
simulated quite differently on datasets with accurate timestamps.

For the simulated network between client and server, we sample
an RTT and PPS. The random RTT between 50–500 ms captures the
variability of Tor circuits. We do not want defenses to get tailored
to particular latencies. The simulated bottleneck of 10,000–20,000
packets per second is, in practice, equivalent to infinite bandwidth,
as most traces are below 5,000 cells over several seconds of fetching
a website over Tor. Finally, we limit the simulator to 5,000 steps.
This is a conservative value in the sense that it allows most sim-
ulations to finish before the entire trace is processed (sending a
normal packet consumes four steps in the simulator, with two at
the sender and two at the receiver). The simulation steps greatly
influence the search space; how depends on the other parameters.
For example, computing constraints over a shorter number of steps
constrain defenses to performing actions early. For defenses target-
ing handshakes, this is desirable, while it may be less so for other
types of defenses where the tail of flows may be informative.

Finally, we express the constraints defenses should fulfill:

1 [derive.constraints]
2 client_load = [0.6, 2.6]
3 server_load = [0.36, 2.4]
4 delay = [0.0, 0.0]
5 client_min_normal_packets = 30
6 server_min_normal_packets = 100

We require the client load (fraction of additional bandwidth) to
be between 0.6–2.6 and the server load between 0.36–2.4, turn off
delay (if min and max are both 0.0), and require a minimum of 30
and 100 normal (non-padding) sent packets from the client and
server, respectively. The minimum load, in particular, is important,
which, in conjunction with the minimal number of normal packets
(at the client, especially), filters out a large number of machines.
Note that these numbers are closely tied to the simulation steps set
in the environment and the environment traces.

D CIRCUIT FINGERPRINTING TUNING
Listing 1 shows the starting configuration for our CF defense search.
The Git diff between starting and final configuration is in Listing 2.

Listing 1: Starting configuration
1 [derive]
2 num_machines = [1,1]
3 max_attempts = 50
4
5 [derive.machine]
6 num_states = [3,4]
7 allow_blocking_client = true
8 allow_blocking_server = true
9 allow_fixed_budget = true
10 allow_expressive = false
11 # count_ref_point
12 # duration_ref_point
13 # min_action_timeout
14

15 [derive.env]
16 traces = ["TorCircuit"]
17 num_traces = [4, 14]
18 rtt_in_ms = [50, 500]
19 packets_per_sec = [10_000, 10_000]
20 sim_steps = [1_000, 1_000]
21
22 [derive.constraints]
23 client_load = [0.5, 10.0]
24 server_load = [0.5, 10.0]
25 delay = [0.5, 5.0]
26 client_min_normal_packets = 0
27 server_min_normal_packets = 0
28 include_after_last_normal = true
29
30 [search]
31 seed = 0
32 n = 1_000
33 max_duration_sec = 900
34
35 [sim]
36 base_dataset = "circuitfp-general-rend"
37 max_samples = 10_000
38 tunable_defense_limits = [1.0, 0.75, 0.5]
39 seed = 0
40
41 [sim.simulator.client]
42 padding_budget = [1000, 1000]
43 blocking_budget = [100_000, 200_000]
44 padding_frac = [0.9, 0.9]
45 blocking_frac = [0.9, 0.9]
46
47 [sim.simulator.server]
48 padding_budget = [1000, 1000]
49 blocking_budget = [100_000, 200_000]
50 padding_frac = [0.9, 0.9]
51 blocking_frac = [0.9, 0.9]
52
53 [sim.simulator]
54 rtt_in_ms = [50, 500]
55 packets_per_sec = [40_000, 40_000]
56 trace_length = 10_000
57 events_multiplier = 1_000

Listing 2: Git diff between starting and end configuration
1 3c3
2 < max_attempts = 50
3 ---
4 > max_attempts = 865
5 12c12
6 < # duration_ref_point
7 ---
8 > duration_ref_point = [23_214, 796_961]
9 17c17
10 < num_traces = [4, 14]
11 ---
12 > num_traces = [7, 11]
13 20c20
14 < sim_steps = [1_000, 1_000]
15 ---
16 > sim_steps = [18_638, 47_942]
17 23,25c23,25
18 < client_load = [0.5, 10.0]
19 < server_load = [0.5, 10.0]
20 < delay = [0.5, 5.0]
21 ---
22 > client_load = [2.78, 3.172]
23 > server_load = [7.051, 9.801]
24 > delay = [0.039, 1.794]
25 28c28
26 < include_after_last_normal = true
27 ---
28 > include_after_last_normal = false

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

)

E PARAMETER TUNING OF WF DEFENSES
We implemented some WF defenses in Maybenot and tuned their
respective parameters to the BigEnough dataset [44]. We repeated
the tuning with and without a simulated network bottleneck be-
tween the client and server. Parameters were generally selected to
minimize overhead, with delay overhead being weighed twice as
much as bandwidth overhead. Table 5 contains the final hyperpa-
rameters. We used the first (out of five) folds for tuning for those
defenses where parameter selection has significant implications
for defense efficacy. For defense efficacy, we used DF and RF with
default hyperparameters and patience 10 for early stopping. Addi-
tionally, DF was modified to use up to 10,000 cells (from its original
5,000). RF parsed the first 80 s of each trace (the average undefended
trace is 28.1 s in BigEnough standard).

The simulated RTT between client and server (middle relay, not
to be mistaken for the destination website) were uniformly ran-
domly selected per trace between [50, 500] ms. All defenses showed
similar results for a fixed RTT of 250 ms on the final parameters.
The randomized defenses (Break-Pad, FRONT, and Interspace) sim-
ulated up to 40,0000 cells. In comparison, the fixed-rate defenses
needed 200,000 cells to ensure that all normal (non-padding) cells
from the original traces were included in the defended traces.

E.1 Break-Pad and Interspace
Both Break-Pad [32] and Interspace [55] target Tor’s Circuit Padding
Framework [52, 53], so implementation in Maybenot is straight-
forward. Break-Pad has no parameters to tune. Interspace has no
parameters to tune, but several parameters are randomized on in-
stantiation of the defense. We, therefore, created 100,000 instances
of the defense, and for each trace in BigEnough (19,000 with no
augmentation), we randomly selected an instance.

E.2 FRONT
We use the implementation of FRONT [21] from Maybenot [56].
FRONT is randomized like Interspace, so we created 100,000 in-
stances to randomly select from per trace. For the parameters,
we did a grid search of 𝑊𝑚𝑖𝑛 ∈ {1, 5, 10}, 𝑊𝑚𝑎𝑥 ∈ {12, 15, 20},
𝑁𝑆 = 𝑁𝐶 ∈ {1500, 1700, 2000, 2500, 3000, 6000}, and the number of
states to approximate the Rayleigh distribution 𝑆 = {1, 10, 100}. For
FRONT with infinite bandwidth, we found bandwidth overheads
0.18–0.75, selecting parameters in the higher range that gave the
best defense against DF (no parameter selection got RF below 0.9).
With a simulated bottleneck, we opted for the parameters with the
lowest overhead (incidentally, the lowest delay overhead).

E.3 Tamaraw
For Tamaraw [10], we did a grid search 𝑃𝐶 ∈ [0.005, 0.03] in 0.005
increments, 𝑃𝑆 ∈ [0.0015, 0.0055] in 0.005 increments, using default
𝐿 = 100 (clear trade-off parameter, no point in tuning), and𝑊 ∈
{2, 4, 6} seconds. The stop window𝑊 is from Gong et al.’s soft stop
condition for real-world implementations of WF defenses [23].

E.4 RegulaTor
We implemented a version of RegulaTor [31] in Maybenot. Exact im-
plementation is not possible due to state machine restrictions. This
has been done in related work [26, 56, 57]. On the client, ensuring

that packets are never queued for more than 𝑐 seconds requires us
to flush all outgoing queued packets instead of just the one delayed
for 𝑐 seconds. For most website datasets, this difference should be
negligible due to light upload traffic. On the server, the main short-
comings of our implementation are discretizing the decaying send
rate into bins and the inability to send only individually queued
packets once the padding budget is consumed. As for the client, we
flush all queued packets according to the packet rate.

E.4.1 Infinite Bandwidth. We started hyperparameter tuning with
infinite bandwidth to find parameters resulting in approximately
92% load and 7% delay—the same overhead as for the tuned Reg-
ulaTor on BigEnough in the Laserbeak paper [43]. Because of the
excessive search space, we did the tuning in phases, using RegulaTor
heavy parameters as a starting point.

(1) Searched the number of bins for the server-side,𝑏 ∈ {10, 50,
100, 1000}. Too fined-grained binning may lead to delayed
surges. Anticipating challenges around keeping delay ac-
ceptable, we opted for a low bin count of 𝑏 = 10.

(2) Grid searched 𝑢 ∈ {3.53.954.0, 4.5} and 𝑐 ∈ {0.5, 1.0, 1.5,
1.77, 2.0} for the client. We saw the lowest delay with 𝑢 =

4.5 and 𝑐 = 1.0.
(3) Motivated by relatively low load and high delays, grid

searched 𝑟 ∈ {200, 277, 300, 400, 600, 800, 1000, 1200} and
𝑛 ∈ {2000, 3000, 3550, 4000, 5000, 6000}. For 𝑟 ≤ 400 we
note high delays, while 𝑟 ≥ 600 allowed for a range of
trade-offs in load and delay based on varying 𝑛. We there-
fore fixed 𝑟 = 600.

(4) Varied 𝑛 as in phase three, but this time also running RF
and DF. We observe a clear relationship between padding
budget and attacker success. We set 𝑛 = 5000 because the
load is still below our target, and we need to reduce delay.

(5) Grid searched 𝑑 ∈ {0.9, 0.92, 0.94, 0.96, 0.98} and 𝑡 ∈ {1.0,
1.5, 2.0, 2.5, 3.0, 3.55, 4.0}. Delay is minimized with 𝑑 = 0.98
and 𝑡 = 2.5 with little difference in load.

(6) To attempt to get delay further down, grid searched 𝑐 ∈
{0.5, 1.0}, 𝑟 ∈ {600, 700}, and 𝑛 𝑖𝑛{5000, 6000}. Delay is
minimized with 𝑐 = 0.5, 𝑟 = 700, and 𝑛 = 5000.

(7) We search 𝑟 ∈ {700, 800, 900, 1000, 1100, 1200}. With 𝑟 =

1200 we hit our target 7% delay. Load is 83%.
(8) We search 𝑛 ∈ [5000, 6000] in 100 increments. With 𝑛 =

5600 we have load 93% and delay 8%.
The final parameters for infinite RegulaTor are: 𝑢 = 4.5, 𝑐 = 0.5,
𝑟 = 1200, 𝑑 = 0.98, 𝑡 = 2.5, 𝑛 = 5600 with 𝑏 = 10.

E.4.2 Network Bottleneck. We use the final parameters for infinite
RegulaTor as a starting point. Recall that the difference between
infinite and bottleneck is that each trace will now have a PPS bot-
tleneck equal to the PPS needed for each trace.

(1) Baseline gives 93% load and 1938% delay. Because the PPS
in the bottleneck is symmetric and sent at the client is a
subset of sent from the server, we can rule out client-side
parameters. The main parameter that controls the peak PPS
from the server is the rate 𝑟 .

(2) We set 𝑛 = 10 to capture the case when the rate is irrelevant
(because the server sends no padding). We get 5% load and
2% delay.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

Table 5: Final defense hyperparameters tuned for BigEnough with infinite and ▽bottleneck network models.

Defense Parameters

Pa
dd

in
g-
on

ly
Break-Pad —
Break-Pad▽ —
Ephemeral padding-only Listing 3
Ephemeral padding-only▽ Listing 4
FRONT 𝑁𝑆 = 𝑁𝐶 = 6000,𝑊𝑚𝑖𝑛 = 5,𝑊𝑚𝑎𝑥 = 12, 𝑆 = 1
FRONT▽ 𝑁𝑆 = 𝑁𝐶 = 1500,𝑊𝑚𝑖𝑛 = 5,𝑊𝑚𝑎𝑥 = 15, 𝑆 = 10
Interspace —
Interspace▽ —

Bl
oc
ki
ng

Ephemeral blocking Listing 5
Ephemeral blocking ▽ Listing 6
RegulaTor 𝑈 = 4.5, 𝐶 = 0.5, 𝑅 = 1200, 𝐷 = 0.98, 𝑇 = 2.5, 𝑁 = 5600, 𝐵 = 10
RegulaTor▽ 𝑈 = 4.5, 𝐶 = 0.5, 𝑅 = 220, 𝐷 = 0.98, 𝑇 = 2.5, 𝑁 = 2000, 𝐵 = 10
Tamaraw 𝑃𝐶 = 0.01, 𝑃𝑆 = 0.005, 𝐿 = 100,𝑊 = 2
Tamaraw▽ 𝑃𝐶 = 0.01, 𝑃𝑆 = 0.0055, 𝐿 = 100,𝑊 = 2

(3) We search 𝑟 ∈ [100, 1200] in 100 increments. Interestingly,
𝑟 = 100 gives 1930% delay, 𝑟 = 200 277% delay, and 𝑟 = 300
303% delay. This suggests some minima where a too-low
rate leads to cascading aggregate delays and a too-high rate
hits too many PPS bottlenecks.

(4) We search 𝑟 ∈ [100, 300] in 10 increments. At 𝑟 = 220, we
get 267% delay and 88% load.

(5) We search 𝑛 ∈ [500, 5000] in 500 increments and run DF
and RF. At 𝑛 = 2000, we get 138% delay, between Tamaraw
and Ephemeral blocking bottleneck delays.

In gist, RegulaTor gets stuck between having a surge spike too high—
hitting the PPS bottleneck—and sending traffic too slow, leading
to delays due to excessive blocking. Part of this might be short-
comings in our port of RegulaTor to Maybenot. Ideally, one would
want a mechanism to set the rate based on the observed bottleneck
dynamically. That related work implementations did not encounter
this is likely due to being implemented as Pluggable Transports
(PTs) [23, 31]. The PT endpoints were run outside the Tor network
with the PT server as a bridge. In this scenario, the network bot-
tleneck between client and destination is likely somewhere within
the Tor network and not between PT client and server, doubly so
in experimental settings with no shared use of the PT server.

E.5 Ephemeral Defenses
The ephemeral defenses for EF were tuned in the same manner as
the CF defenses in Section 4. The process was less structured as
it took place in parallel with the development of the tooling for
ephemeral search and tuning presented in this paper. We present
the configurations for the final defenses below. They also use height
2 like the CF defenses.

Listing 3 shows the final configuration for the ephemeral padding-
only defenses with the infinite network model. Listing 4 shows
the diff between the infinite and bottleneck network models for
padding-only defenses. Listing 5 shows the final configuration for
the ephemeral blocking defenses with the infinite network model.
Listing 6 shows the diff between the infinite and bottleneck network
models for blocking defenses.

Listing 3: Ephemeral padding-only infinite network model
1 [derive]
2 num_machines = [1,1]
3 max_attempts = 50
4
5 [derive.machine]
6 num_states = [3,4]
7 duration_ref_point = [672_000, 950_000]
8 allow_blocking_client = false
9 allow_blocking_server = false
10 allow_expressive = false
11 allow_frac_limits = false
12 allow_fixed_budget = true
13
14 [derive.env]
15 traces = ["DeepFingerprinting", "GongSurakav"]
16 num_traces = [15, 16]
17 rtt_in_ms = [50, 500]
18 packets_per_sec = [10_000, 20_000]
19 sim_steps = [5_000, 5_000]
20
21 [derive.constraints]
22 client_load = [0.6, 2.6]
23 server_load = [0.36, 2.4]
24 delay = [0.0, 0.0]
25 client_min_normal_packets = 30
26 server_min_normal_packets = 100
27
28 [search]
29 seed = 0
30 n = 1000
31
32 [combo]
33 n = 100_000
34 height = 2
35 max_attempts = 50
36
37 [combo.env]
38 traces = ["DeepFingerprinting", "GongSurakav"]
39 num_traces = [15, 16]
40 rtt_in_ms = [50, 500]
41 packets_per_sec = [10_000, 20_000]
42 sim_steps = [5_000, 5_000]
43
44 [combo.constraints]
45 client_load = [0.6, 2.6]
46 server_load = [0.36, 2.4]
47 delay = [0.0, 0.0]
48 client_min_normal_packets = 30
49 server_min_normal_packets = 100

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

)

50
51 [sim]
52 base_dataset = "bigenough-95x10x20-standard-rngsubpages/"
53 max_samples = 100
54 tunable_defense_limits = [0.75]
55 seed = 0
56
57 [sim.simulator]
58 rtt_in_ms = [50, 500]
59 packets_per_sec = [40_000, 40_000]
60 trace_length = 60_000
61 events_multiplier = 1_000
62
63 [sim.simulator.client]
64 padding_budget = [1_000, 2_000]
65 blocking_budget = [0, 0]
66 padding_frac = [0.95, 0.95]
67 blocking_frac = [0, 0]
68
69 [sim.simulator.server]
70 padding_budget = [1_000, 3_000]
71 blocking_budget = [0, 0]
72 padding_frac = [0.95, 0.95]
73 blocking_frac = [0, 0]

Listing 4: Git diff padding-only infinite and bottleneck net-
work model

1 3c3
2 < max_attempts = 50
3 ---
4 > max_attempts = 769
5 7c7,9
6 < duration_ref_point = [672_000, 950_000]
7 ---
8 > duration_ref_point = [247_000, 320_000]
9 > min_action_timeout = [196, 396]
10 > count_ref_point = [254, 469]
11 16c18
12 < num_traces = [15, 16]
13 ---
14 > num_traces = [12, 17]
15 18c20
16 < packets_per_sec = [10_000, 20_000]
17 ---
18 > #packets_per_sec = [10_000, 20_000]
19 22,23c24,25
20 < client_load = [0.6, 2.6]
21 < server_load = [0.36, 2.4]
22 ---
23 > client_load = [2.2, 2.8]
24 > server_load = [1.0, 2.5]
25 25c27
26 < client_min_normal_packets = 30
27 ---
28 > client_min_normal_packets = 33
29 35c37
30 < max_attempts = 50
31 ---
32 > max_attempts = 769
33 39c41
34 < num_traces = [15, 16]
35 ---
36 > num_traces = [12, 17]
37 41c43
38 < packets_per_sec = [10_000, 20_000]
39 ---
40 > #packets_per_sec = [10_000, 20_000]
41 45,46c47,48
42 < client_load = [0.6, 2.6]
43 < server_load = [0.36, 2.4]
44 ---
45 > client_load = [2.2, 2.8]
46 > server_load = [1.0, 2.5]
47 48c50
48 < client_min_normal_packets = 30
49 ---

50 > client_min_normal_packets = 33
51 54c56
52 < tunable_defense_limits = [0.75]
53 ---
54 > tunable_defense_limits = [0.5]
55 59c61
56 < packets_per_sec = [40_000, 40_000]
57 ---
58 > #packets_per_sec = [40_000, 40_000]
59 73a76
60 >

Listing 5: Ephemeral blocking infinite network model
1 [derive]
2 num_machines = [1,1]
3 max_attempts = 711
4
5 [derive.machine]
6 num_states = [3,4]
7 duration_ref_point = [290_000, 966_000]
8 allow_blocking_client = true
9 allow_blocking_server = true
10 allow_expressive = false
11 allow_frac_limits = false
12 allow_fixed_budget = true
13
14 [derive.env]
15 traces = ["DeepFingerprinting", "GongSurakav"]
16 num_traces = [9, 11]
17 rtt_in_ms = [50, 500]
18 packets_per_sec = [10_000, 20_000]
19 sim_steps = [5_000, 5_000]
20
21 [derive.constraints]
22 client_load = [1.5, 7.5]
23 server_load = [0.9, 7.4]
24 delay = [0.5, 5.0]
25 client_min_normal_packets = 30
26 server_min_normal_packets = 100
27 include_after_last_normal = true
28
29 [search]
30 n = 1_000
31 seed = 0
32
33 [combo]
34 n = 100_000
35 height = 2
36 max_attempts = 711
37
38 [combo.env]
39 traces = ["DeepFingerprinting", "GongSurakav"]
40 num_traces = [9, 11]
41 rtt_in_ms = [50, 500]
42 packets_per_sec = [10_000, 20_000]
43 sim_steps = [5_000, 5_000]
44
45 [combo.constraints]
46 client_load = [3.0, 4.0]
47 server_load = [1.0, 2.0]
48 delay = [0.5, 5.0]
49 client_min_normal_packets = 30
50 server_min_normal_packets = 100
51 include_after_last_normal = true
52
53 [sim]
54 base_dataset = "bigenough-95x10x20-standard-rngsubpages/"
55 max_samples = 100
56 tunable_defense_limits = [0.75]
57 seed = 0
58
59 [sim.simulator]
60 rtt_in_ms = [50, 500]
61 packets_per_sec = [40_000, 40_000]
62 trace_length = 60_000
63 events_multiplier = 1_000

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

64
65 [sim.simulator.client]
66 padding_budget = [1_000, 2_000]
67 blocking_budget = [100_000, 200_000]
68 padding_frac = [0.95, 0.95]
69 blocking_frac = [0.5, 0.5]
70
71 [sim.simulator.server]
72 padding_budget = [1_000, 3_000]
73 blocking_budget = [100_000, 200_000]
74 padding_frac = [0.95, 0.95]
75 blocking_frac = [0.5, 0.5]

Listing 6: Git diff blocking infinite and bottleneck network
model

1 3c3
2 < max_attempts = 711
3 ---
4 > max_attempts = 900
5 6c6
6 < num_states = [3,4]
7 ---
8 > num_states = [3,3]
9 18c18
10 < packets_per_sec = [10_000, 20_000]
11 ---
12 > #packets_per_sec = [10_000, 20_000]
13 36c36
14 < max_attempts = 711
15 ---
16 > max_attempts = 900
17 42c42
18 < packets_per_sec = [10_000, 20_000]
19 ---
20 > #packets_per_sec = [10_000, 20_000]
21 46,47c46,47
22 < client_load = [3.0, 4.0]
23 < server_load = [1.0, 2.0]
24 ---
25 > client_load = [1.5, 7.5]
26 > server_load = [0.9, 7.4]
27 61c61
28 < packets_per_sec = [40_000, 40_000]
29 ---
30 > #packets_per_sec = [40_000, 40_000]

F MODEL TRAINING TIMES
Table 6 shows the running time in the infinite training scenario
from Section 5.3. In total 634 hours—almost a month of walltime.
While examining the table, it is important to note that the defense
simulation load plays a role here. That is, runtime comparison
between models can only be interpreted while keeping a defense
fixed, as each defense introduces a different overhead on the overall
runtime due to simulation time.

For the 30 epoch scenario, we have training times: DF 3.6 min,
DF-multi 4.5 min, Laserbeak 32 min, Laserbeak− 16 min, RF 3.2 min.
In both cases, 30 epochs and infinite training, a fair comparison of
the training times becomes hindered by Laserbeak’s large vRAM
usage, leading to those runs having separate hardware compared
to others (DF, df-multi, Laserbeak− , RF). Laserbeak was evaluated
using an AMD EPYC 7R13 and an NVIDIA L40S (AWS instance
type g6e.4xlarge), while the others used an AMD Ryzen 9 7950X
and an NVIDIA RTX 4070 Ti.

G CROSS ATTACK/DEFENSE HEATMAPS
For the cross attack/defense heatmaps in Section 5.4, Figure 7
shows the heatmap for DF [69], Figure 8 for RF [67], Figure 9 for
DF-multi [43], and finally Figure 10 for Laserbeak without atten-
tion [43].

20

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

)

Table 6: Running time per xv fold during infinite training.

BigEnough Training time (h)
DF DF-multi Laserbeak Laserbeak− RF

Undefended 0.3±0.0 0.8±0.2 5.5±0.1 2.7±0.3 0.5±0.1

Pa
dd

in
g-
on

ly
Break-Pad▽ 0.9±0.1 0.6±0.2 7.1±0.8 3.9±0.3 1.0±0.1
Break-Pad 0.8±0.1 1.2±0.2 7.7±1.7 3.8±0.4 0.8±0.1
Ephemeral Pad▽ 1.7±0.2 0.5±0.2 5.6±0.4 2.1±0.9 1.8±0.2
Ephemeral Pad 2.3±0.3 1.9±0.4 6.7±0.1 3.6±0.0 2.3±0.2
FRONT▽ 0.4±0.1 0.7±0.1 5.1±0.5 2.3±0.6 0.7±0.1
FRONT 0.5±0.1 0.9±0.1 5.9±0.4 2.9±0.3 0.6±0.1
Interspace▽ 1.2±0.2 0.9±0.1 5.8±3.5 2.3±0.1 0.8±0.2
Interspace 1.2±0.1 1.2±0.1 8.3±0.1 4.0±0.2 0.8±0.1

Bl
oc
ki
ng

Ephemeral Block▽ 2.2±0.2 0.5±0.2 5.9±1.0 1.1±0.0 2.2±0.5
Ephemeral Block 2.8±0.4 2.1±0.4 8.8±1.7 4.8±0.7 1.9±0.3
RegulaTor▽ 1.1±0.1 1.8±0.2 7.1±1.3 2.3±0.0 1.7±0.2
RegulaTor 1.8±0.2 2.6±0.3 10.1±3.4 3.9±0.0 3.2±0.6
Tamaraw▽ 0.6±0.1 0.7±0.1 5.2±0.1 1.8±0.1 1.7±0.4
Tamaraw 0.5±0.0 1.0±0.1 4.4±0.2 1.6±0.2 1.8±0.3

Figure 7: Accuracy on the BigEnough standard dataset [44] in a closed world for Deep Fingerprinting [69] trained on the defense
given in row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

21

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

Figure 8: Accuracy on the BigEnough standard dataset [44] in a closed world for Robust Fingerprinting [67] trained on the
defense given in row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

Figure 9: Accuracy on the BigEnough standard dataset [44] in a closed world for DF-multi [43] trained on the defense given in
row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

22

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

Ephemeral Network-Layer Fingerprinting Defenses Proceedings on Privacy Enhancing Technologies YYYY(X

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

)

Figure 10: Accuracy on the BigEnough standard dataset [44] in a closed world for Laserbeak without attention [43] trained on
the defense given in row when tested on the defense given in column. Left for the 30 epochs training, right for infinite training.

23

	Abstract
	1 Introduction
	2 Background
	2.1 Circuit Fingerprinting
	2.2 Website Fingerprinting
	2.3 Video Fingerprinting
	2.4 Maybenot

	3 Ephemeral Defenses
	3.1 Random Machines
	3.2 Defense Search
	3.3 Stacked Combinations
	3.4 Tunable Deployment
	3.5 Example: Ephemeral Padding-Only Defenses for Website Fingerprinting

	4 Parameter Tuning Ephemeral Defenses for Circuit Fingerprinting
	4.1 False Positives for Onions
	4.2 Parameter Tuning

	5 Website Fingerprinting
	5.1 Defenses and Parameter Tuning
	5.2 Evaluation and Network Bottleneck
	5.3 Data Augmentation and Infinite Training
	5.4 Generalizability of Trained Attacks
	5.5 The Gong-Surakav Dataset

	6 Video Fingerprinting
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Simulating and Aggregating Delays in the Maybenot Simulator
	B Random Maybenot Distributions
	C Example: Ephemeral Padding-Only Defenses for Website Fingerprinting
	D Circuit Fingerprinting Tuning
	E Parameter Tuning of WF Defenses
	E.1 Break-Pad and Interspace
	E.2 FRONT
	E.3 Tamaraw
	E.4 RegulaTor
	E.5 Ephemeral Defenses

	F Model training times
	G Cross attack/defense heatmaps

